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Abstract: The problem of system identification is addressed by means of general neural
networks with locally distributed dynamics. These networks are based on both multilayer
perceptron and radial basis function structures. Evolutionary algorithms are suggested to
select the optimal neural topologies and parameters. The accuracy of the neural models
and the complexity of their architectures are evaluated by considering six objective
functions organised on a two-level priority hierarchy. The multiobjective optimisation is
solved in the Pareto-sense. Special mechanisms are developed, in order to encourage a
rapid improvement of the genetic material. Application to a laboratory three-tank system
illustrates the approach. Copyright © 2002 IFAC
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1. INTRODUCTION

Due to their approximation capabilities, Mapping
Artificial Neural Networks (MANNs) have been
suggested as a promising alternative to solving
problems of nonlinear system identification. In order
to approximate dynamic nonlinearities, almost all
approaches consider a combination between static
MANNs and external dynamic elements. Recently,
dynamics was included into the neural networks
topologies. The resulted dynamic neural networks are
able to cope more efficiently with process dynamics
and assure a reduction of input space dimensionality.
Details are given in the survey of Isermann, et al.
(1997) and in the literature cited and discussed
therein.

The selection of convenient neural models represents
a complex problem for which none method can lead
to good results for a large variety of practical
situations. It is known that complex neural
architectures, described by a large set of parameters,
can assure a very good approximation over the

considered training data set, but are characterised by
improper generalisation capabilities. Also, for a
given topology, the optimal set of parameters is
difficult to find, because the learning procedure can
be trapped into a local optimum point.

Many authors suggest evolutionary methods that
allow the automatic design of convenient MANNs.
Based on a stochastic search and on mechanisms
similar to biological evolution, evolutionary
algorithms represent efficient optimisation methods
with satisfactory results in nonlinear, constraint and
multiobjective optimisations (Bäck, et al., 1997).
Different combinations with neural network
techniques were proposed. Some of them, named
collaborative combinations, can assist the selection of
proper structures and parameters for MANNs.

The paper suggests an evolutionary method dedicated
to select convenient topologies and parameters for a
new class of MANNs, namely the Dynamic General
Neural Networks (DGNNs).  The architectures of
DGNNs are obtained by including local dynamic
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elements into the topology of static general neural
networks.

The paper is organized as follows. Section 2
describes the structure and characteristics of dynamic
general neural networks. Details regarding the
proposed optimisation algorithm are presented in
section 3. The applicability of the approach within
the framework of system identification problems is
investigated in section 4, with respect to a laboratory
three-tank system (Amira, 1993). Finally, several
conclusions are delivered in section 5.

2. DYNAMIC GENERAL NEURAL NETWORKS

Depending on the characteristics of the hidden
neurons, two broad categories of MANNs (Isermann,
et al., 1997; Liu and Yao, 1996) can be
distinguished: Distributed Neural Networks (DNNs)
and Local Neural Networks (LNNs).

The hidden neurons of DNNs have a global response.
They extrapolate the region beyond the interval
where the training data were acquired. The most
common DNN is the multilayer perceptron,
characterised by sigmoidal activity functions. When a
DNN has to learn a new example, all parameters of
the neural network must be re-trained, in order to
preserve the already achieved knowledge.

In contrast, LNNs have hidden neurons that produce
localised responses. The output of a localised neuron
is nonzero if the inputs belong to a small region of
the input space. Beyond this region, the response of
the neuron is zero. Usually, the Gaussian kernel
function is used as activity function. In order to learn
a new example, only part of the LNN parameters
must be re-trained, because only few neurons have
non-zero response at the considered input example.

Even if DNNs and LNNs are computationally
equivalent and have both the capability to
approximate arbitrary continuous nonlinear
functions, interpolation problems can be more
efficiently solved with sigmoidal functions and
extrapolation problems with localised functions (Liu
and Yao, 1996). General neural networks include
both sigmoidal and Gaussian nodes, taking advantage
from the generalisation capabilities of DNNs and the
computational efficiency of LNNs.

The present approach extends the static general
neural networks to dynamic general neural networks
with locally distributed dynamics. Local synaptic
feedback, local activation feedback and local output
feedback are implemented by including Auto-
Regressive Moving Average (ARMA) filters into the
neural topology (Fig. 1). These filters are
characterised by the discrete transfer function:
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Fig. 1. The topology of DGNN with p inputs, one
hidden layer containing n hidden neurons and one
output. The hidden neurons are characterised by
sigmoidal or Gaussian activity functions. Here

s
ijFH , i=1,…,n, j=1,…,p represents the synaptic

hidden filter corresponding to the connection
considered from input j to hidden neuron i; a

iFH

and o
iFH  denote the activation filter and the

output filter of the ith hidden neuron, respectively;
s
iFO  specifies the synaptic filter corresponding

to the connection considered from the ith hidden
neuron to the output neuron; aFO  and

oFO denote the activation filter and the output
filter of the output neuron, respectively; θ
specifies the bias of the sigmoidal hidden neurons
and the bias of the output neuron; σ,c  indicate
the centres and the standard deviations of the
Gaussian hidden neurons.

Here, )( 1−zP , )( 1−zQ  denote the numerator and the
denominator, respectively, of the discrete transfer
function, and 010 ,,, aabw  represent its parameters.
According to equation (1), it is simple to illustrate
two particular cases: connection characterised by a
simple weight ( 0010 === baa , wzG =− )( 1 ) and
connection eliminated from the neural architecture
( 0=w ). This characteristic allows for a simpler
implementation of the proposed design procedure.
The topology does not include feedback connections
between the neurons included in different layers and
lateral connections between the neurons of the same
layer. In these conditions, the stability of the dynamic
neural networks is easier to check (Isermann, et al.,
1997).

DGNNs have internal memory and therefore they can
cope more efficiently with systems’ dynamics.
Identification schemes based on DGNNs are built
according to the series-parallel model, using input-
output process data. They do not include external
dynamic elements. That means no a priori knowledge
about process dynamic orders and process dead time
is required. Also, the dimension of the input space is
significantly reduced, because past values of process
inputs and outputs are no more necessary to be
presented as inputs of the neural model.

The design of convenient DGNNs represents a
complex task. First, it is hard to indicate the optimal



structure for a particular case. Second, gradient-based
training procedures are difficult to implement,
because past states of the network must be
considered for gradient computation. The method
described in the following uses evolutionary
techniques in order to search for the optimal DGNNs.
The training procedure does not require the
derivatives of the objective functions.

3. EVOLUTIONARY DESIGN OF DGNN

Optimal topologies and parameters of DGNNs are
searched for by means of an evolutionary process. At
each generation, the algorithm acts on a population of
Nind possible solutions, named individuals or
chromosomes. The initial population is randomly
generated from the space of permitted neural models.

Encoding. Each individual included in the population
directly encodes the architecture and the parameters
of a DGNN. Permitted topologies are described in
Fig. 1. All synaptic, activation and output filters are
characterised by the discrete transfer function (1).
The chromosome is organized in a three–level
structure, containing control and parametric genes, as
described in Fig. 2. The highest priority level of the
considered hierarchy, named level 1, specifies which
hidden neurons are included in the encoded neural
topology and the type of their activity function
(sigmoidal or Gaussian). The second priority level
indicates the dynamic structures that are considered
in the neural architecture. That level specifies, for
each included (active) filter, the orders of the
numerator and denominator. All parameters of the
DGNN are encoded as real numbers in the lowest
priority level, named level 3. The design procedure
can consider topologies for which the DGNN input
layer is not fully connected with the active hidden
neurons, and not all permitted dynamic structures are
activated.

The strategy used in a hierarchical genetic algorithm
(Mann, et al., 1997) is such that the control genes
included in a higher level can activate (when control
gene’s value is nonzero) or deactivate (when control
gene’s value is „0“) the corresponding control or
parametric genes contained in a lower level. The
inactive genes are preserved in the chromosome
structure. These are considered as initial values in the
next activations. The hierarchical encoding assures
an efficient exploration of the search space, because
even small variations of the control genes can
produce great changes in the structure of the encoded
DGNN. The present approach uses the integer
encoding for control levels. By this way, an
acceptable compromise is realised between the
exploration capabilities of the algorithm and the
resulted chromosome length.

Genetic operators are applied independently to each
level of genes. Offspring are generated by using
discrete recombination (for the control levels 1 and
2), intermediary crossover (for the parametric level

3) and uniform mutation (Bäck, et al., 1997). These
operators can maintain an appropriate diversity of the
genetic material and are able to reduce the negative
effect of “competing conventions” (Hancock, 1992).
If a resulted offspring does not encode a correct
architecture, remedy actions are applied. A correct
topology satisfies the following requirements: the
hidden layer includes at least one hidden neuron;
each hidden neuron is connected to the output neuron
and with at least one input of the network; each input
is connected to at least one hidden neuron.

 Level 1 
   
 ith  hidden neuron, i = 1,…,n 

0 – hidden neuron deactivated; 
1 – sigmoidal hidden neuron activated;  
2 – Gaussian hidden neuron activated. 

Level 2 
 FHs
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i  

 dynamic blocks  for the ith hidden neuron   
 

FOs
1 … FOs

n FOa  FOo 
dynamics blocks for the output neuron 
0 – connection does not exist (w = 0);  

only for filters FHs, FHo and FOo; 
1 – order (P) = 0, order (Q)= 0 (see eq. 1); 
2 – order (P) = 0, order (Q)= 1 (see eq. 1); 
3 – order (P) = 0, order (Q)= 2 (see eq. 1); 
4 – order (P) = 1, order (Q)= 2 (see eq. 1). 
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.. θ/c, σ … w b0 a1 a0 .. 

parameters of the neural model 

Fig. 2. Hierarchical encoding of the DGNNs. Here
s
ijFH , a

iFH , o
iFH , s

iFO , aFO , oFO denote the
internal dynamic structures illustrated in Fig. 1;
w , 0a , 1a , 0b  represent the parameters of discrete
transfer functions associated to the internal
dynamic elements, as indicated in equation (1); θ
specifies the bias of sigmoidal or linear neurons;
and c ,σ  represent the centres and the standard
deviations of Gaussian hidden nodes.

Multiobjective optimisation. The design of
appropriate neural models is formulated as a problem
of multiobjective optimisation. Six objective
functions are considered and organized, according to
their priority, on a two-level hierarchy. Objective
function f1, namely the sum of output squared errors
computed for the whole training data set, represents a
measure of the neural model accuracy and is assigned
with the highest priority. The values of this objective
function are computed after applying a local
optimisation procedure, as described later. The other
objective functions describe the complexity order of
the encoded neural architecture and have the same
low-level priority:  f2 - the number of active hidden
neurons; f3 - the number of active connections
existing between the network’s inputs and the active
hidden neurons; f4 - the number of active output
filters; f5 - the sum of numerators and denominators’



orders, corresponding to all active output filters; f6 -
the sum of numerators and denominators’ orders,
corresponding to all active synaptic and activation
filters.

Pareto-optimisation. The multiobjective optimisation
problem is solved in the Pareto-sense (Fonseca and
Fleming, 1998; Rodriguez-Vazquez and Fleming,
1997). This means that the solution is represented by
a family of points, named Pareto-optimal set. Each
point of this surface is optimal in the sense that, for
all objective functions characterised by the same
priority level, no improvement can be achieved in
one component without degradation in at least one of
the remaining components. The search procedure is
combined with a decision mechanism, according to a
progressive articulation of preferences (Rodriguez-
Vazquez and Fleming, 1997). A goal is associated to
each objective function. The goals define the desired
area for the objective values. The individuals placed
beyond the specified area are not encouraged to
produce offspring and to survive. During the
evolutionary loop, the goals are adapted according to
the mean performances of the current population
(Marcu, 1997). The Pareto-optimisation method is
based on a ranking selection. The present approach
considers new rules for computing the ranks. If an
individual satisfies all imposed goals, its rank is
assigned based on the values achieved by the
objective function f1. Otherwise, the rank is specified
taking into account the degree of goals’ violations
and the priority of the unsatisfied goals.

The insertion is solved by means of the Pareto
reservation strategy (Tamaki, et al., 1996). Soff
offspring and Nind – Soff individuals contained in the
current population are selected to survive in the next
generation. The method encourages the survival of
non–dominated chromosomes. If the number of non-
dominated individuals exceeds, a parallel selection is
considered upon the set of non–dominated
individuals, meaning that the selection is applied
separately for each objective. If the number of the
non-dominated individuals is less than the number of
individuals that must survive, the rest of the
population is filled in, using a parallel selection
applied to the set of dominated chromosomes.

Evaluation of objective function f1. All DGNNs are
trained according to a supervised learning method.
Before computing the values of the objective
function f1, a local optimisation procedure is applied,
for NO_ITER iterations, to the active parametric
genes of each chromosome. The local optimisation
acts in the Lamarckian-sense and does not require
gradient information. As local optimisations, two
different methods are used. One method is a standard
genetic search and the other one is the optimisation
procedure suggested by Salomon (1998). The latter
optimisation strategy can be briefly described as
follows. At each iteration, the method estimates the
gradient direction and the step size, based on the
information given by some test candidates.

Migration strategy. In order to assure an efficient
search within the large space of permitted neural
models, a special mechanism is developed as follows.
The population is separated into two partially isolated
subpopulations. For the first subpopulation, a mono-
objective optimisation is considered, demanding the
minimisation of the objective function f1. The genetic
material of the second subpopulation is improved
according to the multiobjective optimisation
previously formulated. At the end of the evolutionary
loop, the best neural model included in the second
subpopulation is used. Evolutionary techniques are
separately applied to each subpopulation. Once at
NO_MIGR generations, an appropriate exchange of
information is permitted between the considered
subpopulations. During migration, the genetic
material of the second subpopulation is enriched with
individuals well adapted according to the highest
priority objective. Also, chromosomes that encode
simple neural structures are introduced into the first
subpopulation. By this way, the pressure imposed by
the highest priority objective is increased and
accurate models are encouraged to survive and
duplicate.

Evolutionary algorithm of DGNN design. A
schematic description is presented as follows:

1. Create an initial hierarchical population
containing Nind individuals.
2. Check the correctness of the encoded topologies
(with remedy actions if necessary) and compute
actual values of goals.
3. Apply the local optimisation procedure, for
NO_ITER iterations, to the active parametric genes of
each chromosome.
4. Evaluate the chromosomes according to all
considered objectives and compute the fitness values.
5. Loop over a number of MAX_GEN generations:

5.1 For each subpopulation:
5.1.1 Select parents for the reproduction pool.
5.1.2  Apply crossover and mutation operators.
5.1.3 Check the consistency of offspring (with
remedy actions if necessary).
5.1.4 Apply the local optimisation procedure, for
NO_ITER iterations, to the active parametric
genes of each offspring.
5.1.5 Evaluate offspring and compute their
fitness values.
5.1.6 Insert the offspring into the population,
according to the Pareto reservation strategy.
5.1.7  Once at NO_MIGR generations, exchange
individuals with the other subpopulation
(migration stage).
 5.1.8  Adapt goals and compute fitness values.

5.2 Determine the best individual(s) of the second
subpopulation.

6. Determine best individual(s) over all performed
generations.
7. (Optionally) Train with a local optimisation
procedure the selected neural model, for a larger
number of iterations.
8. End of the algorithm.



4. APPLICATION

The applicability of suggested methodology is
studied with respect to the neural identification of the
“Three-Tank System DTS 200” (Amira, 1993). This
experimental set-up consists of three cylindrical
tanks with identical cross sections being filled with
water (Fig. 3). The tanks are interconnected with
circular pipes. All three tanks are equipped with
piezo-resistive pressure transducers for measuring the
level of the liquid.

h 1(t)

T1

h 3 (t)

T3

h 2 (t)

T2

����������

leak outlet

pump 1
1(t) 2 (t)

pump 2

L1 L3 L2

C13 C32 C20

q q

Fig. 3. The “Three-Tank System DTS 200”.

The volume flows of lateral tanks, denoted by
)(1 tq and )(2 tq , represent the two inputs of the

system. Three system outputs are considered, namely
the liquid levels in the tanks. Two of them,

)(1 th and )(2 th , can be pre-assigned independently.
The third output of the process, that is the level

)(3 th in the middle tank, is uncontrollable. Here, t
stands for the time variable.

For the experiments, the reference values of the
liquid levels were changed pulse-wise. Different
magnitudes and periods of rectangular pulses were
considered for each controlled tank. The input-output
data of the process were sampled at every TS = 5s
during a test period of 400s. The identification task
was considered for the normal system behaviour
(outlets L1, L2, L3 closed and valves C13, C32, C20
opened).

To estimate each process output, a multi-input single
output neural network was designed. The DGNN had
5 inputs, representing the current values of process
inputs, and the plant output values obtained at the
previous sampling moment. In all experiments, a
reduced number of hidden neurons was sufficient, i.e.

3=n . This allowed for a fast evaluation of the
DGNNs. The parameters w , 0a , 1a , 0b , θ  were
selected between – 5 and 5, and the parameters c ,σ
between – 1.25 and 1.25. The investigations tested
different values for the following parameters: the
number of training epochs allowed for the local
optimisation procedure (NO_ITER), the number of

offspring generated at each iteration by the local
optimisation procedure (Noff), and the number of
individuals contained in the population (Nind).

It is advantageous to set low values for NO_ITER,
even in combination with a high population size,
because the local optimisation procedure must be
applied sequentially, iteration by iteration, to each
chromosome, but the genetic search can support a
parallel implementation. If the NO_ITER value is too
low, the topology of the best neural model can result
very different from a generation to another one.

The procedure can offer, as final solution, sometimes
very simple architectures and sometimes very
complex and bad adapted architectures. This
„unstable“ behaviour is due to the fact that the
evaluation is always made on insufficient trained
networks. Low values for Nind cannot support an
efficient exploration of the search space and the
obtained results are unsatisfactory.

Table 1. Sum of squared errors (corresponding to
normalised training sets) obtained by considering two

different local optimisation methods

The estimated plant
output 1̂h 2ĥ 3ĥ

With Salomon’s
method 0.0328 0.0063 0.0063

With genetic
optimisation 0.0356 0.0068 0.0068
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Fig. 4. Model validation (generalisation). The
selected neural topology contains one sigmoidal
hidden neuron and one Gaussian hidden neuron,
and is characterised by the following objective
values: 22 =f , 63 =f , 14 =f , 15 =f , 116 =f .
The active dynamic elements are indicated next:
two synaptic hidden filters ( sFH12 , sFH 21 ), all

activation hidden filters ( aFH1 , aFH 2 ) and all

filters corresponding to the output neuron ( sFO1 ,
sFO2 , aFO , oFO ). The sum of output squared

errors, computed for the normalised testing data
set, is 0.04.



The experiments revealed that an important
improvement of the convergence rate can be obtained
by using the strategy described in section 3, based on
the subpopulations’ evolution. Some of the resulted
topologies are analysed next. They correspond to the
following algorithm parameters: 500=Nind ,

75_ =ITERNO , 75=Noff , 20_ =MIGRNO ,
300_ =GENMAX . The designed neural models are

characterised by high accuracy, as indicated in Table
1 and Fig. 4. Their structures are simple, containing
few neurons, few connections and few internal
dynamic elements. The best results were obtained by
using the Salomon’s optimisation procedure.

5. CONCLUSIONS

The paper suggests an evolutionary method
developed to design convenient general neural
networks with locally distributed dynamics. These
dynamic networks include two types of hidden
neurons, sigmoidal and Gaussian, therefore they can
cope efficiently with a large variety of system
identification problems.

The design procedure does not require any
information about the gradient of the objective
functions. Near-optimal neural models are obtained,
characterised by a good accuracy and simple
architectures. The user must set some parameters of
the evolutionary search, but this task seems to be
easier than that of manually selecting the DGNNs’
topologies. The disadvantage of this procedure is that
it needs large computational resources.

Further research will include the design of a fault
diagnosis system, based on neural observer schemes
(Marcu, et al., 1999). In order to guarantee an early
detection and isolation of faults, the neural observers
must capture the dynamic behaviour of the process,
by learning the general trend of the target values and
filtering the noise. The global recognition rate of the
fault diagnosis system is strongly dependent on the
performances of the designed neural observers.

Previous results (Marcu, et al., 1999) indicate that, in
the case of the “Three–Tank System DTS 200”, a
fault diagnosis system based on neural observer
schemes can detect incipient faults (clogs and leaks)
corresponding to mass flows of about 10-20 ml/s.
These performances are better than those
characterising a fault diagnosis system with linear
observers (40 ml/s). Considering the evolutionary
method described in the present paper, it is expected
to improve the quality of neural observers and, in
consequence, the global recognition rate.
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