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Abstract. In this contribution we present a controller tuning method which combines
some of the advantages of Iterative Feedback Tuning (IFT) with some of the advan-
tages of simultaneous perturbation stochastic approximation (SPSA). In particular
this scheme can be shown to converge with geometric rate when a pure gradient
search is used and the system is noise free. The number of experiments required to
obtain an unbiased estimate of the gradient can be reduced significantly for multi-
input multi-output systems. In particular we study the problem where the reference
signal is periodic and when the noise is negligible.
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1. INTRODUCTION

Iterative Feedback Tuning (IFT), (Hjalmarsson
et al., 1998), is a model free method for tuning,
especially, general linear controller structures. The
method performs optimization of the controller
parameters w.r.t. some design criterion using mea-
surements from the plant collected during a clev-
erly designed experiment. In standard IFT normal
operating conditions are interrupted for ad hoc ex-
periments using specially chosen input signals. An
alternative procedure is considered in this paper,
assuming that a copy or at least a reasonably good
model of the original plant is available. In this
case normal operating conditions of the original
plant will not be interrupted, and the shadow-
plant will be used solely to carry out the gradient
experiments. An important feature of IFT is that
no modeling of the plant and the disturbances are
required. The principle is that the experiments are
performed such that an estimate of the gradient of
the design criterion is obtained and this estimate
is subsequently used to update the parameters of
the controller.

During the last years quite some experience has
been gained with IFT from, e.g. robust control of a
simulation model of a flexible transmission system
(Hjalmarsson et al., 1995) and vibration attenua-
tion (Meurers and Veres, 1999). It has also been
applied by the chemical multinational S.A. Solvay
to tune PID controllers for temperature control in
furnaces, in distillation columns, flow control in
evaporators etc., see (Hjalmarsson et al., 1998).
Common to many of the processes in these appli-
cations is that they exhibit some kind of nonlin-
ear behavior and even if IFT was developed for
linear time-invariant systems it performs well on
these systems as well, see (Hjalmarsson, 1998) and
(Sjoberg and Bruyne, 1999) for an analysis.

For a single-input/single-output (SISO) system,
a maximum of three experiments are required in
each iteration regardless of the number of param-
eters in the controller. For a multi-input/multi-
output (MIMO) system the situation is quite dif-
ferent, however. A MIMO system using a con-
troller having n,, inputs and n, outputs requires
1 4 ny X ng experiments. Assuming that the ex-
periments are carried out on copies of the original
plant, this clearly limits the applicability of the



method for multivariable systems: either we need
a large number of copies or we have to use small
fragments of time devoted to compute different
directional derivatives.

A possible way of reducing the number of ex-
periments is to use a randomization technique
that has been first presented in connection with
simultaneous perturbation stochastic approxima-
tion (SPSA), see (Spall, 1992). The latter method
has been developed for function minimization
problems where the evaluation of function-values
is expensive. In fact, in each iteration only two
function values are needed. Recently, it has been
shown, (Gerencsér and Vagé, 2001), that the
SPSA estimator sequence converges with geomet-
ric rate almost surely when the step-size in the
algorithm is fix and the function evaluation is
noise-free.

Using these ideas we get a randomized IFT where
an estimate of gradient is obtained from a physical
experiment that gives an approximate value of
the directional derivative in a random direction.
Similar to SPSA, the randomness of this direction
implies that an approximately unbiased estimate
of the complete gradient can be obtained from this
single experiment regardless of the dimension of
the system or the controller. In this contribution
the focus is on the problem where the reference
signal is periodic and when the noise is negligible.
It is shown that in this case randomized IFT
method inherits the geometric convergence rate
of noise-free SPSA.

2. THE CONTROL DESIGN CRITERION

We consider an unknown true system described
by the discrete time LTI MIMO model

(t)-e(E) o

where ¢ represents the discrete time instances, G is
the (generalized) plant consisting of the true plant
and possibly some frequency weighting filters and
a reference model (see below) and is represented
by a transfer function matrix, r,eR"" represents
external signals such as set-points, reference sig-
nals etc, v,eR™ represents unmeasurable signals
such as (process) disturbances and noise, w,eR™>
represents the sensed outputs and u,eR™ rep-
resents the control signals. Furthermore y,eR™
represents the variables that will be included in
the control criterion (e.g. measured outputs and
control signals). By proper definition of the gen-
eralized plant, these signals can be filtered (fre-
quency weighted) versions of measured signals in
the real system. By including a reference model
in the generalized plant, some of these signals
may also be the difference between outputs of the
reference model and real plant outputs. In this
paper the focus will be on the case when v, = 0,
i.e the system is noise-free, and r,, is periodic.

The system is controlled by the following con-
troller

up = C(p)wn (2)

where C(p) is a n, X n,, transfer function matrix
parametrized by some parameter vector peR"™s.

The feedback system is shown in Figure 1. The
external signal zeR™ in this figure will be used
later.

r—= L .Y

v—= G

z=0

Fig. 1. Feedback system.

Whenever signals are obtained from the closed
loop system with the controller C'(p) operating,
we will indicate this by using the p-argument; on
the other hand, to ease the notation we will from
now on, when possible, omit the time argument
of the signals. Thus, y(p) will denote the signals
in the control criterion when the controller (2) is
used.

We shall in this paper assume that each channel
in the controller is independently parameterized
as in Figure 2 where a 2 x 2 controller is shown
and where each block Cj; of the controller is pa-
rameterized by an independent parameter vector

Pij-

Fig. 2. A controller where each block Cj; is inde-
pendently parameterized.

In the IFT design scheme the following quadratic
control criterion is adopted:

N
T0) = 5B | S ) Weunlp)| )
t=1

where E[-] denotes expectation w.r.t. the distur-
bance v. The weight matrix WY can be used to
minimize the settling time at setpoint changes
(Hjalmarsson et al., 1998). This criterion include
many commonly used control criteria. In particu-
lar it can, with proper definition of the generalized
plant handle model reference following.

The optimal controller parameter p* is defined by

p* = argmin,J(p), (4)

To carry out the minimization it is necessary
to have an expression for the gradient of this
criterion with respect to the controller parame-
ters. The novel contribution of the IFT approach
(Hjalmarsson et al., 1994) was to show that, in
contrast to previous approaches, for SISO systems
an approximation of the gradient can be obtained
entirely from input-output data collected on the
actual closed loop system, by performing one spe-
cial experiment on the system.



3. ITERATIVE FEEDBACK TUNING

We now address the minimization of J(p) given
by (3) with respect to the controller parameter
vector p for a controller of prespecified structure.
To facilitate the notation we shall from now on
assume that W2 equals the identity matrix which
we denote by 1.

In general the problem of minimizing J(p) is
not convex and one has to content with a local
minimum or even a stationary point. To obtain a
stationary point of J(p) we would like to find a
solution for p to the equation
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If the gradient g—‘; could be computed, then the

solution of (5) would be obtained by the following

iterative algorithm:

1 Q

k 6p

Here R, is some appropriate positive definite

matrix, typically a Gauss-Newton approximation

of the Hessian of J, while 7, is a positive real
scalar that determines the step-size.

P = o =R = (0"), k=1,2,.... (6)

This procedure is not directly implementable since
it requires the knowledge of the plant to get
the gradient. Equivalently, we need to get an
approximate value of

[g—i(p’“)] Ty(p’“)-

The computation of this quantity has always been
the key stumbling block in solving this direct
optimal controller parameter tuning problem. The
key contribution in the original derivation of IFT
(Hjalmarsson et al., 1994) was to show that for
single input/single output (SISO) systems these
quantities can indeed be obtained by performing
experiments on the closed loop system formed by
the actual system in feedback with the controller

C(p)

3.1 The gradient

Let us now consider how to obtain the derivative
of y w.r.t. the parameter vector p;; which parame-
terizes the ijth block Cj; of the controller. We can
write the relation between controller block C;; and
an arbitrary output y; as

r
(zﬁ) :Gijl v (7)
1] uZ]
ui; = Cijw; (8)

where G;j; does not depend on p;; and is obtained
from the interconnection between the generalized
plant G' and all controller blocks except Cj;, see
Figure 3. The feedback system in Figure 3 has the
structure of a SISO system. Differentiating (7)—(8)
w.r.t. an arbitrary element of p;; gives (' denotes
the derivative)

vl 0
) — Gz 0 9
<w23> Jl<u;j> 9)
U::j = C,fjwij + Cingj (10)

These equations represent the same feedback sys-
tem as in Figure 3 but with the external input
zij = Cj;wi;. Hence, the gradient y; is obtained
by performing a closed loop experiment with all
external signals zero except for z;; = C ;wij where
w;; is first obtained from a closed loop experiment
corresponding to (7)—(8), i.e. with r as reference.

Now, using the linearity of the system, the gradi-
ent w.r.t. all parameters in Cj; can be obtained
from these two experiments. The procedure is as
follows: 1. Perform a normal experiment with the
desired reference signal r, c.f. Figure 1. Measure w
and y. 2. For each controller block Cj;, c.f. Figure
2, perform an experiment where r = 0 and where
wj is injected at the output of controller block Cj;,
i.e. z;; = w; in the block diagram in Figure 3.

By filtering the Ith output element, y7, of y from
this experiment through the gradient of controller
block C; w.r.t. any element of p;; (this is a known
scalar transfer function which we denote by Cj;),
the gradient of y; w.r.t. any parameter in the
vector p;; can be obtained. Hence the gradient
for each element of y w.r.t. any parameter in the
controller block C;; can be computed from this
experiment. To compute the gradient w.r.t. to all
possible parameters in a full block controller, n,, x
n,, gradient experiments are necessary with this
approach giving a total of 1+ n,, x n,, experiments
in order to be able to compute all gradients.

r
V—" Gu(Q)

7;=0

Ly

Fig. 3. Feedback system where each channel in
the controller is independently parameter-
ized. The generalized plant G;j is indepen-
dent of the parameter vector p;;

4. A MODIFIED SPSA-METHOD

A special procedure for minimizing a cost function
the evaluation of which is costly has been devel-
oped in (Spall, 1992). In that paper the problem
of minimizing a three-times continuously differ-
entiable function L() was considered, under the
condition that the computation of L(.) is expen-
sive. The main idea of the proposed simultaneous
perturbation stochastic approximation (SPSA) is
to estimate the gradient of L(.) using numerical
approximations of directional derivatives in ran-
dom directions. Then, using a simple algebraic
operations, we can reconstruct an unbiased es-
timator of the numerical approximation of the
gradient.

SPSA methods have been analyzed under vari-
ous conditions in (Chen et al., 1999), (Gerencsér,
1999), (Kushner and Yin, 1997) and (Spall, 1992).



Simplified and improved versions have been de-
veloped in (Spall, 1997; Spall, 2000). In contrast
to the standard setup in SPSA-theory, in IFT
the partial or directional derivatives of the cost
function can be computed experimentally, up to a
negligible error, due to ”non-stationary initializa-
tion”. But as we have seen these experiments can
be costly for MIMO systems. The novel idea is
now to use random directions, as in SPSA, for the
gradient estimation to ensure that the number of
derivative evaluations is small. In this section we
will present this modification of SPSA in a general
setup.

Consider the problem of minimizing a three-times
continuously differentiable function L(#) defined
over some p-dimensional bounded open subset D,
under the condition that its directional derivatives
of are computable exactly via expensive physical
experiments. Assume that the gradient Ly van-
ishes at single point in D, denoted by 6*.

We compute directional derivatives in random
directions as follows: let 6 be a fixed value, and
generate random directions by taking a sequence
of independent, identically distributed random
variables, with time index n, Ay, @ = 1,...,p.
A standard choice is a Bernoulli-sequence, where
A,; = 1 with equal probability. Introduce the

notation A7t = [AL],... A_I]T and define

nl» » = np
H(n,0) = A'ATLy(6). (11)

It is easy to see that H(n,d) is an unbiased
estimator of Ly(#) and. Since Ly (6*) = 0, we have
identically

H(n,6%) = 0. (12)

The problem of estimating 8* under the condition
H(n,0*) = 0 has been considered in a general
framework in (Gerencsér and Vagé, 2001). It is
easy to see, using the results of (Benveniste et
al., 1987) that for a standard stochastic approxi-
mation procedure with gain 1/n would the asymp-
totic covariance matrix of the estimator process is
0. Thus the convergence rate is better than the
standard rate n~'/2. But how much better can
it be? A straightforward, but tiresome calculation
induces us to consider fized gain stochastic ap-
proximation processes of the form

Fixed gain recursive estimation processes of this
general form have been widely used in the en-
gineering literature in connection with the well-
known LMS-algorithm of adaptive filtering and
the identification of time-varying systems. A new
feature of the present problem is that the condi-
tion H(n,0*) = 0 is imposed.

Assuming 6* = 0 and assuming that H is smooth
in @, an exact linearization around #* will lead to
the following equivalent form of (13):

Onsr = On — MA@ +1,0,)0,.  (14)

If L is a quadratic function then Ly is linear
and A(n + 1,6,,) is in fact independent of 6, for
which Oseledec’s multiplicative ergodic theorem,
(Oseledec, 1968; Ragunathan, 1979), is applicable.

Thus we get that for any initial condition 6
outside of a set of Lebesgue-measure zero

ol s
P 10810 =0 =

with probability 1. If A is small enough then
(Gerencsér, 1991) implies that p < 0, thus the
convergence rate is geometric.

In the general, non-quadratic case we need to
enforce the boundedness of 6,,, say ,eDg, where
Dy C D is some compact domain, by using a re-
setting mechanism. In (Gerencsér and V4gé, 2001)
we presented the surprising result that, in spite of
eventual non-linearity in Ly and resetting, 6,, does
converge to 6* almost surely at a geometric rate.
The analysis is based on a discrete-time ODE-
method, following (Gerencsér, 1996), in which the
8, will be compared with the discrete-time deter-
ministic process (z,) defined by

Zn+1 = Zn + )‘Lﬂ(zn)y 20 = £ = 96D97 (15)

and thus a random The advantage of the discrete-
time ODE-method is that the errors due to con-
version from discrete to continuous-time, that
show up in standard ODE-methods, do not show

up.

The associated continuous-time ODE is defined as
yt = /\Lg(yt), S Z 0.

(16)

The solution of (16) will be denoted by y(t, s, &).

ys = &§ = zeDy,

Condition 4.1. The ordinary differential equation
(16) is globally exponentially stable in some com-
pact domain D, C D: for some Cy >0 and a > 0
we have for all 0 < s < ¢, zeD, |y(t,s,2)| <

Coe— (%) Tn addition we assume that

0
5548, 2)ll < Coe™ (9. (17)

Resetting: Let D¢ be a compact domain of possible
initial values with interior D¢, and let Dy be a
compact truncation domain such that Oe intD;
and S(Dg,d') C intDy for some d' > 0. Assume

~

that & = 6OpeD¢. At time n we first define a

tentative value 6,41 following (13) as 41— =
0, — AH(n +1,6,), and then we set

if 0n+1— EDg
if 6,41 ¢Dy. (18)

0n+1 = 0n+1—
Ony1 =160
Condition 4.2. Let S(0,r) denote the sphere with

center in the origin and radius r. It is assumed
that for some 0 < r < R we have

D C 5(0,7) C S(0,R) C Dy. (19)

Now applying the results of (Gerencsér and Vagg,
2001) we get:
Theorem 4.1. Consider the algorithm

Oni1 =0, —MNATATLG0) 6o =€ (20)

Assume that L is three-times continuously differ-
entiable with bounded derivatives up to second



order in D, and let Conditions 4.1 and 4.2 are sat-
isfied. Let £ = §peD¢ and assume that Cir/R < 1.
Then, under weak additional conditions on the
position of the domain D,, there exists a v with
0 < v < 1 such that for sufficiently small A we
have

On] < O

where C' is a positive random variable C.

5. RANDOMIZED IFT

We now present a randomized version of the gra-
dient estimation procedure presented in Section
3.1 based on the considerations in the previous
section.

Let v; = 0 and (r;) be a periodic input with period
Ny. For any fixed p let z}(p) and y;(p) be the
steady-state state and output-processes, respec-
tively. Then the cost function can be written as

No
T0) = g [ W0 Wi o)
t=1

The cost function and its gradient are computable
by physical experiments up to an error due to ini-
tial conditions. Let the initial state of the system
be £ and let §,(p, &) be the corresponding output-
process. Let 7 be a fixed delay that is introduced
to reduce the effect the effect of transients. Define

. 1 7+No
T8 = g5 2 [9n (0, 1" Wiin(p,€). (21)

t=7+1

Then it is easy to see that

|7(p,€) = T(p)] < Ce™*7|z*(p) — ¢

with some a > 0. A similar estimate holds for the
gradient processes.

Let now p, be a sequence of estimators that is
used in successive experiments. A key novel as-
sumption is that the system can be replicated, and
thus one control system is purely used for evalu-
ating the controller performance, while a copy of
it is used to evaluate a directional derivative. Let
the corresponding state-sequence in the original
control system be z,,. Then under mild conditions
we have |z, — z}(pn)| < ¢|6, — 6*| with some
constant c.

Ultimately we come to consider the perturbed
version of (20) where Ly(0) is replaced by Lgy(6) +
0Ly, (), where the norm of the latter is bounded
by ¢|6,, —0*|. Note that the perturbation is multi-
plicative. Taking 7 large enough ¢ can be made ar-
bitrarily small, and thus the analysis of (Gerencsér
and Vagd, 2001) can be carried over, and the
conclusion of Theorem 4.1 remains valid.

6. SIMULATION RESULTS

Most of the simulations have been devoted to test
the viability of noise-free SPSA. Testing random-
ized IFT itself is under progress. The algorithm
(20) has been tested for randomly generated func-
tions up to dimension 100. First we considered
quadratic functions of the form L(f) = 167 A6,
with some symmetric positive definite A, which

is obtained as follows: first generate a diagonal
matrix with diagonal elements chosen according
to exponential distribution, and the apply ran-
dom rotations: a pair of coordinates is chosen
randomly, according to uniform distribution, and
then a rotation in the selected plane is applied
with an angle that is random and has uniform
distribution. In each experiment we had N = 500
iterations.

We have also considered non-quadratic problems
of the form

L) = %HTA(G)H with A(6) = A+ u(0)u(6)”

where u(6) = D6 with some fixed matrix D where
the elements of D were chosen uniformly in the
range of [0,cp], where ¢, = 0.1 was chosen in
this experiment. Geometric rate of convergence in
this case is ensured by the results of this paper
and indeed confirmed by simulation results similar
to the quadratic case. We have carried out these
experiments with different stepsizes A, and the top
Lyapunov-exponent is approximated by the final
value log |0 — 6*|/N.

0.01

Top Lyapunov exponent
method: SPSA

0.005F

-0.005

-0.015
0

Fig. 4. The optimal top-Lyapunov exponent is
p = —0.0148, SPSA method.

ok Top Lyapunov exponent
method: deterministic gradient
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Fig. 5. The optimal top-Lyapunov exponent is
p = —0.0631, gradient method.

In Figure 4. and Figure 5. the approximate top
Lyapunov-exponent is plotted against the step-
size A for an increasingly non-quadratic problem
in dimension p = 20 for the plain SPSA method
and for the gradient method, respectively. A key
indicator of the efficiency of the SPSA method
is the number of function-value evaluations that
is needed to achieve a given accuracy. This is in
turn essentially determined by the top-Lyapunov
exponent the control of which via the stepsize
is therefore a key issue. An adaptive procedure



for choosing the optimal A has been proposed in
(Gerencsér and Vagé, 2001)

Consider now the cases when the SPSA and
the gradient method both operate under their
respective optimal stepsize for a problem that we
described above. Comparing the optimal values
of the top Lyapunov exponents it is seen, that the
number of experiments to achieve a precision € =
0.01 is n = log(e)/p = 311 in the SPSA case and
n = log(e)/p - p = 1459 using gradient method.
These results are supported by experimental data.
Thus we conclude that SPSA is more economical
then similar deterministic methods.

7. CONCLUSION

We have presented a randomized version of It-
erative Feedback Tuning (IFT) using ideas of
simultaneous perturbation stochastic approxima-
tion (SPSA). We have considered noise-free multi-
input multi-output systems with periodic refer-
ence signal. The directional derivative in a random
direction is approximated by a single physical
experiment. Under the assumption that the sys-
tem can be replicated, and the replica is used for
the gradient estimation, the proposed method has
geometric rate of convergence.
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