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Abstract: In this paper it is shown how to efficiently solve an optimal control problem with
applications to model predictive control. The objective is quadratic and the constraints
can be both linear and quadratic. The key to an efficient implementation is to rewrite the
optimization problem as a second order cone program. This can be done in many different
ways. However, done carefully, it is possible to use both very efficient scalings as well as
Riccati recursions for computing the search directions.
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1. INTRODUCTION

Optimal control of discrete-time systems with con-
straints is used in many applications. Among oth-
ers is Model Predictive Control (MPC), (Morari and
Lee, 1999), where such a control problem is solved at
each sampling instant. MPC has its origin in Dynamic
Matrix Control (DMC) which was invented by engi-
neers at Shell Oil in the early 1970’s and presented
in (Cutler and Ramaker, 1979). How DMC evolved to
become what today is called MPC together with the
current status of research in MPC is described in nu-
merous surveys, e.g. (Garcia et al., 1989; Morari and
Lee, 1991; Morari and Lee, 1999; Muske and Rawl-
ings, 1993; Qin and Badgwell, 1996; Ricker, 1991).

Recently specially tailored Interior Point (IP) methods
applicable to MPC have appeared, (Gopal and Biegler,
1998). These algorithms solve the resulting Quadratic
Program (QP) by utilizing the special structure of the
control problem. By ordering the equations and vari-
ables in a certain way the linear system of equations
that has to be solved for the search direction becomes
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block-diagonal, (Wright, 1993; Wright, 1996). By fur-
ther examining this structure it is possible to solve
the equations using a Riccati recursion. This makes
the computational burden to grow only linearly with
the time horizon, (Rao et al., 1997). A similar ap-
proach is used by Steinbach, (Steinbach, 1994). Ric-
cati recursions have also been used together with ac-
tive set methods for solving the optimal control prob-
lem, (Arnold and Puta, 1994; Glad and Jonson, 1984).
Comparisons between active set methods and IP meth-
ods have been done by several authors, (Albuquerque
et al., 1997; Biegler, 1997; Wright, 1996).

Recently, it has been shown that stability of MPCs
can be established less conservatively if the opti-
mization problem considered at each sampling inter-
val is a Quadratically Constrained Quadratic Program
(QCQP), (Lee, 2000; Lee and Kouvaritakis, 1999;
Scokaert and Rawlings, 1998). This facilitates e.g. el-
lipsoidal terminal state domains. In addition piecewise
quadratic terminal state weights can be used, (Lofberg,
2001). Robustness can also be addressed with QCQPs,
(Hansson, 2000). The idea of using Riccati-recursions
work also for QCQPs. However, it is not possible to
use feasible IP-methods (Wright, 1997). Because of
this no proof of polynomial complexity is available.



A way to overcome this is to reformulate the QCQPs
as Second Order Cone Programs (SOCPs), (Lobo et
al., 1998). The objective of this paper is to show how
Riccati recursions can be used also in this context.

The remaining part of the paper is organized as fol-
lows. Section 2 presents the control problem and for-
mulates it as an SOCP. In Section 3 the Karush-Kuhn-
Tucker (KKT) conditions are stated and transformed
by using a logarithmic barrier. In Section 4 it is dis-
cussed how to compute the search directions and how
to scale them. In Section 5 it is shown how to effi-
ciently solve the equations for the search directions by
using a Riccati recursion. Then, in Section 6 feasibility
is discussed. Finally, in Section 7 some concluding
remarks are given.

2. CONTROL PROBLEM

In this section the control problem is described. First
the model is presented and some constraints are pre-
sented. Then the performance measure is introduced.
The optimization problem is reformulated as an SOCP.

Consider the following model and constraints for k =
0,...,N—1:

Tpy1 = Arxr + Brug,
2 = Crr, + Dyug,
by, > Erxr + Frug, (1

1 Zx%WxN,

where z;, € R™ is the state, up, € R™ is the control
signal, z, € R? is the output and where 4, € R**",
Bk = Rnxm’ Ck = Rpxn’ Dk € Rpxm’ Ek = qun’
F, € R17*™ b, € RT and 0 < W € R™ ™. The
inequality in (1) should be interpreted as component-
wise inequality. With abuse of notation we will denote
both the given initial value and the state variable
at time zero with xg. The performance criterion to
minimize is defined as

N-1

T T
¢ = E 2, 2k + NPz,
k=0

where P is positive semidefinite. The performance
criterion can easily be extended to handle piecewise
quadratic end-point penalties by replacing % Pz
with

max (e Pizn — pi).
i

This can be used to show stability for larger sets of
initial values of xg, see (Lofberg, 2001), but this will
not be discussed further in this paper. The optimiza-
tion problem can be reformulated as

N
min Ztk 2)
t ko
subject to Hy = d,
My <b,
2l <tp, k=0,...,N—1,
.'L"IA}PSL'N <tn,

x%Wa:N <1,

where y¥' = [2 ul ... 2N, uk_; 2], d¥ =
[z 0 ... 0] and
I 0 0 ... 0
—Ag —By I ... 0
H= . . . . )
0 ... “Any_1—-Bn_11

M =[& ) [Ex Fi] 0]

The reason for having one quadratic constraint for
each k instead of one for all k is explained in Sec-
tion 5. To be able to solve the optimization problem
efficiently we will formulate it as an SOCP. To this
end define

) -1 0 0
Lk: ]_ 0 0 ?
_0 —2C}y —2Dy,
CZ:[IIO]; k=0,...,N, c%-i-l:[lo]’
[—1 0 0 eg
p: 1 0 ,W:[ 1 ’f: : ’
| 0 —2pP% 0-w €

where eg € R*™+1 ig the first unit vector. Then the
optimization problem can be written as the SOCP

min fTy 3)
Yy, s
subject to s = ci —ﬁkgjk, k=0,...,N -1,
sy =cn — Pin,

SN+1 = cnt1 — Win,

r=b— Mj,

0=d— Hj,

skl < sko, k£=0,...,N+1,
0<r,

where §F = [ty 2} u} ], §% = [ty =X and where
M and H are modified versions of H and M with
zero columns where ¢ comes in. We use the notation

Sk,0

= ],Where Sko0 €R

)

3. KARUSH-KUHN-TUCKER CONDITIONS

In this section we will discuss how to solve the SOCP
that was presented in the previous section. The KKT



conditions for the SOCP are

0 0 0 HO0O0][p d
0 0 0 L TIO||A ¢
0 0 0 MOTI| |7]_ b @)
HT LT MT 0 0 0] |9 I’
0 S 0 0AO||S 0
0 0 R OOTI]ILr 0
together with the cone constraints
SkZKkOa )\kZKkOa kZO,...,N+1,
r >0, v20,

where g, r and s are the primal variables and ), ~y
and p are the associated dual variables. The notation
Sk >k, 0isequivalentto ||sg,1|| < sk,0. The matrices
S, A and L are defined as

2 NI, P R
L_[ k[((J)Wk/] ]’ & =leq - el

A =Dblock diagy_ .
S =block diagkzo’“

JN+1 Ay,
LN+1 Ska

where S}, and Ay, are arrow-matrices defined as

S, = [Sko 851] A= |:/\k0 )\le] ‘

sk1 Skol Akt Akol

Furthermore R = diag(r), I' = diag(y) and ey €
RP*L. For a unified treatment of quadratic and linear
constraints, see (Alizadeh and Schmieta, 1997). Under
certain regularity condition the KKT conditions are
necessary and sufficient for the SOCP. Specifically a
solution to the KKT condition is also a solution to the
SOCP.

Had it not been for the cone constraints, a straight
forward application of Newton’s method to solve the
equality condition would have been sufficient. The
key idea in IP methods is to remove the cone con-
straints by using a logarithmic barrier transformation,
see (Alizadeh and Schmieta, 1997). This will result in
arelaxation of the complementary slackness condition
k=0,...,

SiAreq = peg, N +1,

RT =1,

where ¢ > 0, and hence modify the righthandside of
4) to

R . T
[d" & b" fT 2peg p1'] )
where ¢l = [eg ... ej |, and where eg € RP+1. Now

the cone constraints are only implicitly present, and
we can apply Newton’s method, assuming that the ini-
tial point is strictly feasible, i.e. satisfies the cone con-
straints with strict inequality. By gradually decreasing
1 the original complementary slackness condition will
be recovered. The step-length in Newton’s method is
chosen such that the cone constraints are never vi-
olated. In this paper a potential-reduction method is
used to determined the step-length, see (Vandenberghe
and Boyd, 1995).

4. SEARCH DIRECTION

In this section the primal-dual potential function will
be introduced and the resulting equations for the
search direction will be obtained followed by a dis-
cussion on how to obtain the Nesterov-Todd search
direction for the SOCP.

First define the barrier functions as

Y. (rr) = —In(rg),

Ys(sk) = —In(so — [|s1ll),

and then define the primal-dual potential function as

N+1
T=vIn(\"s++7r) + D Ts(si) + Ts()
k=0
Ngq
+ Z TL(TIC) + TL(’Yk)
k=1
— (2(N +2)+ Nq)In(2(N +2) + Ng),  (6)

where v is a design parameter which determines the
relative weight between duality gap and centrality.
Since (6) has a concave term a modification of New-
ton’s method is applied to (6), where the second
derivative of the concave term is ignored. This leads
to the following equation for the search direction

0 0 0 HO0O0][Ap 0

0 0 0 L I0||AX 0

0 0 0 MoI|l|Ay]_| O o
HT LT MT 0 00| |AY U
0 © 0 0 10| |As V¥

0 0 =2 001] Ar -V,¥

where ©? and =2 are the modified Hessians of ¥
with respect to A and <, respectively. To be able to
solve (3) efficiently a scaling can be introduced. When
introducing a scaling the problem must be kept scaling
invariant. A popular scaling is the Nesterov-Todd(NT)
scaling, see (Tsuchiya, 1998). It has been shown that
primal-dual algorithms using the NT scaling have
polynomial complexity. Let the NT scaling matrix for
the cone constraints be defined as

ay, —Bro 51{1
G (Akssk) = | —Bro Skt Sk
—Br,1 Bk21 Tg,22
1 _/Bk
= on [ Bkﬂk ;
ay,



ap = Cko By = Ck1
\/ Sko — G Gra \/CRo — CHim

= (Cro» k1) = (Bko + Akos Bk1 — Ak1),
_k = (Ako> A1) = wjy - (Ako, Akt),
5k = (3k0, 5k1) = wW(5k0, Sk1),

271/4
= [sko— | st ||2] /
No= It [P

For the linear inequalities the scaling matrix is defined

as
1/2
Yo = diag (r—k) .
Tk

Let Gy and ¥» operate on the unscaled problem as
follows

Ly=Gi'Ly, k=0,...,N—1,
P=Gy'P, W=GyLW,
M=%;'M,
~k=GkAk7 gk_Gk Sk k=07 7N+17
¥=%37y, F=33'r
Nt -
E_ @kzolLli?EBP
[0 W]

The NT scaling matrix maps the primal and dual
variable to the same vector v, which is given by

T -1
Vg :Gk)\k = Gk Sk,

T -1
UNf2 =257 =25 T

k=0,...,N+1,

With this scaling the following equations for the
search direction is obtained

0 0 0 HOO0][Ap
0 0 0 LIo||Ax
0 0 0 MOI||Ax
HT LT MT o 00| A7
0 I 0 01I0]| A3 wy
0 0 I 00I1] A7 w

where w; = (v + 2N (1 —In2) + Nq)v — 2V 1é,,
wy=w+2N(1-1n2) + Ng)vnio — VJ\7-1+21’

V' = block diagy—g .. n41 Vi,

and where V}, are arrow-matrices defined by vy for
k=0,...,N+1. Finally, VN+2 = diag(vN+2).

5. EFFICIENT SOLUTION OF EQUATIONS FOR
SEARCH DIRECTION

In this section it is shown how a Riccati recursion
efficiently can be used to solve the equations for the
search direction obtained in Section 4. From the two
last block-rows of (8) it follows that As = —AX+w

and A7 = —A#J + wy. By substituting this back into
(8) the following equation is obtained

0 0 0 H][Ap 0
0 =TI 0 L||AX|_ [-w ©
0 0 —I M| |AF —ws
HY LY M" 0] [Ag 0

Reorder the variables in Ay as

[Ato ... Aty Azl Aud ... Azh_; Auk_; Azy]

and partition the dual variable as AA} = [AXf; AXL, ],

where A)j; contains the first two elements of A\.
Now define

Ao
Aj\t = ) A)A\ =
AXNy1

AS‘O,y

AXN 11,y

Then with some reordering of rows, (9) can be refor-
mulated as

a —-I 0 0 0 QrL At —wy

o af o A7 0 0 A 0

0 0 0 0 0 H Ap| | o

B 0 0 -I 0 =L AN T | —we | ?

0 0 0 0 -1 M| | Ay —ws

o LTaT HT LT=T MTsT o Ay 0
(10)

where [w] qu] = w{, B = block diag(Br1 +
Yk,21). & = block diag(Xy,22), and where

_ . —ay, — 8
= blockdiag ( [ﬂk 0k+ Eik’lol] ) ,

1 = block diag ([Q’Bk]) ,
k,12

-2C, —=2Dy 0 0
L=| o —2CN_1 =2Dn_1 O ;

0 0 0 —2pt/2

0o ... 0 0 —W/?

From block-rows 4 and 5 of (10) it follows that
A= YLAy + BAt + wy,
Ay =Y M Ay + ws.

By substituting this back into (10) the following equa-
tion is obtained

T aT BTEL 0 At —BTw,
a —I QL 0 AAt _ — Wt
sttt @ HTY| |Ay| | —w |’
0 0 H 0 Ap 0

(11)
where

Q =MTsIs,M + LTYTSL,
=L'S w, + MTSTw,.



Now partition (11) as
D1 P12| [A U
= . 12
5 () = o 1
The partitioning is done so that ®; is a (3(N + 1) +
1) x (3(IN + 1) + 1) block matrix which easily can be

inverted because of the block diagonal structure of &
and (. Then (12) can be written

Ay = (1 — 129, ®1,) (UL — 21285 '), (13)
Ay =&, (Uy — BL,A)).

Since ) has a block-diagonal structure and H is
built from the dynamic system with a very specific
structure, &5 U, can be efficiently computed using a
Riccati recursion approach as in (Wright, 1993). Had
we replaced the N quadratic constraints szzk < tg
with one constraint Y5 o' 27z, < t, then Q would
not have had the desired structure and the Riccati
recursion could not have been applied. By using the
matrix inversion lemma it holds that

(@) — @129, 0T,) ' =, — 3,19,
x (L0719, — @) 1@L 8. (14)

It can be shown that (®7,®7'®;, — ®5) has the
same structure as ®5 and thus can be factorized by
a Riccati recursion as well. Substituting (14) into (13)
we realize that the rest of the algorithm can be divided
into the following steps

1 calculate ; = @ 1, using a Riccati recursion

2 leta=U; — @121’]1

3 let & = ®1,®; la

4 solve (®1,® 1 ®15 — ®2)n = & using a Riccati
recursion

5 now Al = <I>1_1a - <I)1_1<I)12’l72

6 then Ay = 7 — <I>2_1<I>12A1 where the second

term also can be computed using a Riccati recur-
sion

Notice that in Step 6 parts of the Riccati recursion
used in Step 1 can be reused. For detailed information
on the Riccati factorization approach, see (Rao et al.,
1997). The computational complexity grows linearly
with the time horizon N.

6. STRICTLY FEASIBLE INITIAL POINTS

In this section it will be shown how to obtain strictly
feasible initial primal and dual points. It will also be
shown when there exist solutions to (1). To simplify,
we will look at a special case of constraints

wr < Epxp + Frup < Gk,

where F, has full column rank. This can be written as
in (1) with

Be=| %) A= | k] =T as)

6.1 Dual Initial Point

A strictly feasible dual point (p, A, ) has to satisfy
block row 4 of (4), A\, >k, 0andy > 0. By choosing
A1 = 0 and A\gg = 1, N + 1 rows of block row 4 in
(4) will be satisfied. The remaining rows are trivially
satisfled by p =0 andy = 1.

6.2 Primal Initial Point

To look for a strictly feasible primal point consider the
following problem

min 7 (16)
T
subject to Hy = d,
My<b+r,

x%WxN <1l+r.

When (16) has a solution 7 < 0 a strictly feasible
primal point to the original problem can be found. The
corresponding dual problem can be stated as follows

max —dlp—bTy—cTA a7
pYA A A
subject to WIX+ MTy + HTp = —F,
| AL {1 Ao,
0<,

where H = [0 H] and where

M =[e35 [-1 By ] 00],

-10 0
Ww=|-10 0 |,

0 0—2W:3
c"'=[200], ff=[10...0].

A primal-dual algorithm can be used to determine if
the original problem is feasible or not. More precisely
there exist three different cases of solutions to (16) and
a7

o —dTp—bTy—cTX > 0. There exists no strictly
feasible solution to the original problem

e 7 < 0. There exists a strictly feasible solution to
the original problem

o 7=—dTp—bTy—cT X = 0. There exist a feasi-
ble solution to the original problem, however not
strictly feasible

Notice that this so called Phase 1 problem also can be
reformulated as an SOCP as in Section 2, and thus it
also can be solved using a similarly approach.



7. CONCLUSIONS

In this paper it has been shown how to efficiently
solve an optimal control problem with applications to
model predictive control. Special attention has been
given to formulate the problem as an SOCP while still
preserving certain structure under scalings. Preserving
this structure makes it possible to efficiently solve
the equations for the search directions using Riccati-
recursions. The computational complexity grows lin-
early with the time horizon. It has also been shown
that the algorithm in an easy way can determine when
a problem is feasible.
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