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France
∗∗ Laboratoire d’Automatique de Grenoble, ENSIEG, BP 46,

38402, Saint-Martin-d’Hères Cédex, France
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Abstract: This paper studies the problem of periodic stabilization of nonlinear
underactuated mechanical systems. In opposition to the problem of stabilization of
underactuated systems (i.e. acrobots, pendubots, etc.) to a fixed equilibrium, the
problem of orbital stabilization of underactuated systems consists in finding control
that leads to a stable periodic orbits. The problem is relevant to a class of mechanical
systems aimed at operating under periodic motion (orbits), i.e. walking mechanisms
(Grizzle et al., 2001), like the one shown in Fig.1.
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1. INTRODUCTION

The problem of orbital stabilization arises from
applications where the “natural” operation mode
is an oscillatory one. The example treated in this
paper concerns the stabilization of underactuated
mechanisms, more precisely robots with less ac-
tuators than degrees of freedom.

Walking mechanisms, like the one shown in Fig.1
are intended to operate under periodic motions,
i.e. walking, running, balancing phases. They
are complex mechanisms to be controlled be-
cause their dynamics may be subject to structural
changes during normal operation (loose of degrees
of freedom, impacts, sliding, etc.), and the joint
trajectory references are not necessarily known in
advance. This last point implies that the control
design set up is different from typical formulations
of output tracking and regulation, where the set
point (or the reference trajectory) is a priori given.
Instead, the control design here should lead to a
closed-loop system that generates its own periodic
(stable) motion in the same way as a nonlinear

oscillator does. The problem is relevant because
there is a need for making the walking (or run-
ning) gaits varying on-line.

Here we address the particular case of a n-degrees
of freedom walking mechanism, with m = n − 1
actuators. We assume that one leg is in contact
whereas the other is not. The contact leg is
assumed not to slide, and we do not consider
any ground impacts. In other words, we look to
a system which is equivalent to a n-degree of
freedom inverted pendulum. However, the feasible
workspace will be assumed to be restricted by the
walking surface. Controlled motion under such a
consideration leads to a problem that we name
periodic balancing.

The control design aims at finding a feedback law
such that the high-dimensional inverted pendu-
lum is able to reach a periodic motion in a stable
way. We also wish to be able to move from one
orbit to another, possibly by just changing the
speed of the cycle and/or the amplitude of the
motion. Although not mandatory, this last point
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Fig. 1. The 5-DOF walking robot Rabbit.

is essential when it comes to apply this idea to
walking/runnig machines; it will allow to vary the
speed and amplitude of the shape and speed of
the gaits.

The admissible limit cycles cannot be completely
free. To some extent, they should comply with
the constraints imposed by the physics of the
workspace (i.e. walking motion is constrained by
the ground surface). This last restriction disquali-
fies feedbacks leading to homoclinic orbits (orbits
with constant energy levels), that may induce
inadmissible motions out of the robot workspace.

A possible control approach leading to a fam-
ily of periodic orbits consists in finding a par-
ticular change of coordinates (generalized angle,
and generalized radius deviation) as proposed by
(Hauser and Chung, 1994), such that the (local)
orbital stability can be determined by looking
at the resulting transversal local approximation.
The idea was applied to the cart and pendulum
system, and requires to find, case-by-case such a
transformation.

The control approach proposed here, consists first,
in designing a feedback that transforms the full
dimensional system motion into a one with lower
dimension 1 (zero dynamics), where the limit cy-
cles can be easily studied. Then, a controller is
designed such that the low-dimension dynamical
system motion reaches a specified target orbit. In
this particular setup, the periodic behaviour of the
zero dynamics implies also a periodic motion of all
the system states.

Our contribution was reformulated recently in the
context of an hybrid automaton for the double
inverted pendulum (see (Asarin et al., 2001)),
where the search for a class of constrained orbits
was done by means of the reachability analysis
tool d/dt, a tool for verification and control
synthesis for hybrid systems.

1 This idea was previously used for walking robots with 3

and 5 DOF, see (Grizzle et al., 2001)

In this paper we introduce a new control ap-
proach that imposes periodic behaviour to the
zero-dynamics, by means of a dynamic controller.
We introduce here the idea of virtual mechanical
constraints as a support to our control design.

In the following section we formulate the problem.
Section 3 studies the conditions under which the
zero-dynamic may exhibe periodic orbits, and
present a way to render this orbit stable through
a dynamic controller. Finally we present some
simulation results.

2. PROBLEM FORMULATION

Consider the n-DOF underactuated mechanism,

M(q)q̈ + C(q̇, q)q̇ + g(q) = Bτ (1)

where q ∈ Rn is the joint position vector, τ ∈
Rm,m < n is the input torque, M is the inertia
matrix, C the coriolis and centrifugal matrix, and
g is the gravity vector. B of rank m, is the input
matrix that maps the m torque input vector τ to
the joint coordinates space of dimension n.

Assume that q can be partitioned in two sets of
coordinates (q1, q2), where q1 ∈ Rm corresponds
to the actuated joints, and q2 ∈ Rn−m to the non
actuated ones. Thus B = [Im, 0(n−m,m)]

T , and (1)
can be expressed as

(

m11 m12
m21 m22

)(

q̈1
q̈2

)

+

(

N1(q, q̇)
N2(q, q̇)

)

=

(

τ
0

)

(2)

Define the following output

y = q1 − φ(q2, θ(t)) := h(q, t) (3)

where φ(q2, θ) is a smooth function, to be defined
later, and θ is a parameter vector allowed to vary
with the time. Note that y = 0 defines a manifold
of dimension m, where the system motion is
constrained by the relation q1 = φ(q2, θ). For a
2-DOF system, one can take as an example a
linear constraint of the form q1 = aq2 + b, where
θ = [a, b]T .

Denote J(q) = ∂h
∂q

, f the other terms involved in

the differentiation of (3), and N(q, q̇) = C(q̇, q)q̇+
g(q), the following feedback law

τ = (JM−1B)−1
[

u+ JM−1N − f
]

(4)

assuming that JM−1B is not singular (at least
locally), linearizes the output y, i.e.

ÿ = u

It is easy to show that the family of non-smooth
feedbacks of the form:

u=−λẏ − kss− k|s|nsign(s) (5)

s= ẏ + λy (6)



ẏ = q̇1 + Jq̇ +
∂φ

∂θ
θ̇ (7)

where 0 ≤ n < 1, k, and ks are positive constants,
stabilizes y → 0 in finite time. Note that in this
setup the parameter vector θ may be allowed to
vary in time.

Zero dynamics. The zero-dynamics resulting
from y → 0, will be of dimension (n−m). It can
be computed by first noticing that y = ẏ = ÿ = 0
implies u = 0, and J̇ q̇ = −Jq̈, which substituted
in (4), and then in (1) gives

Mq̈ +N = B(JM−1B)−1
[

JM−1N + Jq̈
]

(8)

that after some manipulations can be rewritten as

P (q) [M(q)q̈ +N(q, q̇)] = 0 (9)

where P = In − B(JM−1B)−1JM−1 is the pro-
jection operator on the kernel of JM−1 in the
orthogonal direction of B.

The zero dynamics lies then on a configuration
space of dimension n−m. Using the constrains

q1 = φ(q2, θ)

q̇1 = J2(q2, θ)q̇2,+Jθ(q2, θ)θ̇

q̈1 = J2(q2, θ)q̈2 + p2(q2, q̇2, θ, θ̇, θ̈).

with J2 =
∂φ
∂q2

,Jθ =
∂φ
∂θ

, and p2 = J̇2q̇2+Jθ θ̈+J̇θ θ̇.

It is thus possible to write the dynamics (9) as
a function of the unactuated joints q2 only, by
taking n−m independent lines of the system

P (φ(q2), q2, θ)

[

M(φ(q2), q2, θ)

(

J2q̈2 + p2
q̈2

)

+N(φ(q2), q2, J2, q̇2, Jθ, θ, θ̇)
]

= 0

The same expression can be obtained by subs-
tituting the above constrains on the unactuated
part of the system in (2), i.e.

(m22 +m21J2)q̈2 +m21p2 +N2 = 0 (10)

where the mi,j , φ, p2, and N2 are functions of

q2, q̇2, J2, and θ, θ̇, θ̈.

The zero dynamics (10) admits, with z =
[qT2 , q̇

T
2 ]
T , a state-space representation of the form

ż = f(z, φ(z, θ), θ, θ̇, θ̈) (11)

The vector θ can be seen here as an additional
degree of freedom that will be used to produce
an (stable) oscillatory behaviour of the equation
(11).

Problem definition. The problem is to find a
smooth function φ and an adaptation law (dy-
namic feedback) for θ̈, such that the zero dynamics
(11) exhibits periodic (stable) solutions z∗.

When θ is found to be a constant and thanks to
the restriction imposed by y = 0, it is clear that

the actuated joint coordinates q1 will exhibit a pe-
riodic motion, if z do have one. The zero dynamics
will thus acts as a nonlinear autonomous oscillator
which drives the rest of the coordinates (through
the imposed virtual mechanical constrains q1 =
φ(q2, θ)) to a periodic orbit.
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q1 = φ(q2)

Fig. 2. Principle of the virtually constrained pen-
dubot

This idea is illustrated in Fig.2, which shows a
2-DOF inverted pendulum (pendubot) under the
proposed feedback structure. The actuator at joint
q1 is replaced by a virtual mechanical link (cons-
traint), whereas the motion of the unactuated
joint q2 is driven by the zero dynamic generator,
represented here as a virtual motor.

In the following sections, we study the conditions
under which the functions φ(x, θ), ensures the
existence of periodic orbits, and studies different
ways of defining θ̈ to render these orbits stable.

3. PERIODIC ORBITS FOR THE ZERO
DYNAMICS

Consider systems where the number of actuators
is m = n − 1. This case leads to a zero dynamics
of dimension one (dim(q2) = 1), described by
a second order nonlinear equation. Its behaviour
can thus be studied in the plane. In this case, the
equation (10) takes the particular form:

β2(q2, φ, θ)q̈2 + β0(q2, q̇2, φ, θ, θ̇, θ̈) = 0 (12)

Assume that: ∃ φ, such that ∀ θ resulting from
the adaptation law θ̈ (to be defined latter), and
∀ q2 ∈ Ω2 ⊆ Q2 (Q2 is the workspace for the
underactuated variable), the solution of (12) are
well defined , i.e.

β2(q2, φ, θ) > 0 (13)

Let us define qd2 as a desired equilibrium (center),
for exemple the steady-state solution of (12).
Denote x = [x1, x2]

T , with x1 = q2 − qd2 , and
x2 = q̇2, then (12) writes as

β2(x1, q
d
2 , φ, θ)ẍ1 + β0(x, q

d
2 , φ, θ, θ̇, θ̈) = 0. (14)

that under assumption (13) has the following
state-space representation x = f(x, θ, φ, θ̇, θ̈):

{

ẋ1 = x2
ẋ2 = −β(x, φ, θ, θ̇, θ̈)

(15)



with β = β0

β2

.

Target orbit (exosystem). Introduce the gene-
ralized target orbit Ωd(x) defying a closed path in
the phase plane. Let also Ωd(x) define an invariant
and (at least locally) attractive set of the solution
of the generalized exosystem (orbit generator),

{

ẋ1 = x2
ẋ2 = −βd(x)

(16)

By thereby, we assume that the function βd(x)
vanishes at the equilibrium x = 0 (βd(0) = 0)
only, which is included in a convex set where Ωd(x)
is assumed to be. In other words, there exist a
closed setM∈ R2, s.t.M contains no equilibrium
points and is positive invariant. The bounded
semi-positive orbit Ωd(x) is thus contained inM.

Example 1 (parabolic orbits). Consider the
“centered 2 ” family of parabolic target orbits,

Ωd =

{

x : Vd =
1

2
(αdx

2
1 + x22)

}

as a function of the parameters set {Vd, αd, q
d
2}

defining: the desired orbit level Vd, the desired
orbit shape αd, and the desired orbit center qd2
(see footnote).

These orbits attract the solutions of the exosystem
(16), with βd(x) defined as

βd(x) = αdx1 + kV x2Ṽ (x)

where Ṽ (x) is given by

Ṽ (x) = V (x)− Vd =
1

2
(αdx

2
1 + x22)− Vd

that is,

ẋ1 = x2

ẋ2 =−αdx1 − kV x2

(

1

2
(αdx

2
1 + x22)− Vd

)

To see that, define v = Ṽ 2/2, and note that
v̇ = −2kV x

2
2v ≤ 0. The only two cases where v̇

cancels are: 1) when the solution have reach the
target orbit (v = 0), and 2) when initial condition
are taken at the equilibrium x = 0. The former
case shows the positive invariance of Ωd, the later
is a consequence that the orbit should be centered
at the equilibrium point (qd2 , 0).

Example 2 (nonlinear oscillator). The previ-
ous examples require the explicit knowledge of the
target orbit. It is however possible to re-formulate
a similar problem by only defining the exosystem
(orbit generator) without explicitly using the ex-
pression of the invariant set (orbital attractor) Ṽ .
As an example consider the exosystem defined by
the nonlinear oscillator

2 Due to the change of coordinates x1 = q2−qd

2 , the orbits

will be centered about x1 = 0. In practice, the user specs
are also function of the center point qd

2

ẋ1 = x2

ẋ2 =−x1 − εh′(x1)x2

where ε > 0 and h(x) fulfills the following well
known properties:

i) h(0) = 0,
ii) h′(0) < 0,
iii) limx1→∞ h(x1) =∞,
iv) limx1→−∞ h(x1) = −∞.

As a consequence of this, there exists (at least)
one strip S = [−smin, smax], of length Ls such
that h(x1)x1 < 0 inside of S, and h(x1)x1 ≥ 0
outside of S. The length Ls will allow to modify
the amplitude of the oscillation. As a particular
example we have the Van der Pol oscillator which
obtained by letting h(x1) = −x1 +

1
3x
3
1.

This leads to define the exosystem (16) with
βd(x) = x1 + ε(−1 + x21)x2, i.e.

ẋ1 = x2

ẋ2 =−x1 + ε(1− x21)x2

In both examples, we have thus that for all x(0) 6=
(0, 0)T , the system trajectories of (15) converge to
the target orbit Ωd (example 1), or to the solutions
of the nonlinear oscillator (example 2), provided
than we can find a function φ, and a feedback law
for θ̈ such that assumption (13), and the equality,

β(x, φ, θ, θ̇, θ̈) = βd(x)

holds simultaneously. This is formally stated next.

Main result. Theorem. Let θ1 = θ, θ2 = θ̇,
Θ = (θ1, θ2)

T . Consider the following extended

zero dynamics ( with φ = φ(x1,Θ) ):















ẋ1 = x2
ẋ2 = −β(x, φ,Θ, k(x, φ,Θ))

θ̇1 = θ2
θ̇2 = k(x, φ,Θ)

(17)

where k(x, φ,Θ) defines the adaptation law for θ̈.
Assume that a k(x, φ,Θ) can be found such that
the following holds:

(1) A target orbit (or a target exosystem) is
defined by the equation set (16), throughout
the definition of a particular βd(x),

(2) There exists a smooth function φ(x1,Θ), and
a set ΩΘ of suitable initial conditions for
Θ(0) = Θ0, such that:

A1) β2(x1(t), φ(x1(t),Θ(t)),Θ(t)) > 0,

A2) β(x(t), φ(x1(t),Θ(t)),Θ(t)) = βd(x).

for all Θ(t), x1(t), t ≥ 0 resulting from the
solution of (17), with x(0) 6= 0, and Θ(0) ∈
ΩΘ.

(3) The resulting sub-system, with x∗(t) =
x∗(t+ T ), and |x∗(t)| <∞,



{

θ̇1 = θ2
θ̇2 = k(x∗, φ,Θ)

(18)

yields bounded solutions.

Then, for all x(0) 6= 0 the solution x(t) converge
to the target orbit.

4. STUDY CASE: THE PENDUBOT

Consider the pendubot equations in the form (2),
with

M =

(

m11 m12
m12 m22

)

(19)

and

N =

(

N1
N2

)

=

(

C11 C12
C21 C22

)(

q̇1
q̇2

)

+

(

g1
g2

)

(20)

where

m11 = m1l
2
1 +m2(l

2
2 + L21 + 2L1l2c2)

m12 = m2(l
2
2 + L1l2c2)

m22 = m2l
2
2

C11 = −m2L1l2s2q̇2
C12 = −m2L1l2s2(q̇1 + q̇2)
C21 = m2L1l2s2q̇1
C22 = 0
g1 = g((m1l1 +m2L1)s1 +m2l2s12)
g2 = gm2l2s12

(21)

with si := sin(qi) , ci := cos(qi) , sij := sin(qi +
qj). The parameters values are: L1 = 0.52m ; l1 =
0.3m ; l2 = 0.29m ; m1 = 6kg ; m2 = 4kg, and
g = 9.81. We have here B = (1, 0)T

Target orbits. For this study case, we consider
the two possible structures of equation (16) pro-
posed in the previous section, i.e.

• Parabolic orbits,

βd(x) = αdx1 + kV x2Ṽ (x)

• Nonlinear oscillator,

βd(x) = x1 + ε(−1 + x21)x2

Zero-dynamics. Consider the particular case of
φ(q2, θ) = aq2 + b(t), θ = (a, b(t))T with a
constant, and b(t) to be adjusted as described
previously. Then, the output y is:

y(t) = q1(t)− aq2(t)− b(t) (22)

Let qd2 be the desired equilibrium about which the
limit cycle will be defined, then the resulting zero
dynamics expressed in the shifted coordinates is
given by (14), with

β2(x1, a, q
d
2) =m2l2((1 + a)l2 + aL1 cos(x1 + qd2))

β0(x, a, b, ḃ, b̈, q
d
2) = σ2(·)x

2
2 + σ1(·)x2 + σ0(·)

where,

σ2(·) =m2l2L1a
2 sin(x1 + qd2)

σ1(·) = 2m2l2L1aḃ sin(x1 + qd2)

σ0(·) =m2l2

[

(l2 + L1 cos(x1 + qd2))b̈+ L1ḃ
2 sin(x1 + qd2)

+g sin((a+ 1)(x1 + qd2) + b)
]

A sufficient condition satisfying hypothesis (A1)
of the theorem for the existence of feasible solu-
tions is β2 = m22 + am12 > 0, ∀q2, which can be
simplified to a simple bound on a

|a| <
l2

L1 + l2
:= amax (23)

however, less conservative bounds can be found
(i.e. negative values for a).

Adaptation law. The state-space representation
of the zero dynamics is given by (15) with β =
β0/β2, with β0 and β2 as defined previously.
Interestingly enough, it can be shown by direct
calculations that the expression resulting from the
equality (A2) of the main theorem, is affine in b̈,
i.e.

γ(x1, a)b̈+ ξ(x, a, b, ḃ) = βd(x) (24)

with,

γ =
m2l2(l2 + L1 cos(x1 + qd2))

β2(x1, a)

ξ =
σ2x

2
2 + σ1x2 + ζ

β2(x1, a)

ζ =m2l2

[

L1ḃ
2 sin(x1 + qd2)

+g sin((a+ 1)(x1 + qd2) + b)
]

therefore the adaptation law k(x, φ,Θ), with b =
θ1, ḃ = θ2, and b̈ = k(x, φ,Θ), (a is not consider
anymore as an adaptation parameter) has the
form:

b̈ =
1

γ(x1, a)

(

−ξ(x, a, b, ḃ) + βd(x)
)

(25)

Note that, solutions of this equation are well
defined as long as γ > 0, that is if a is selected
according to (23), and L1 > l2. This last condition
can be interpreted as a physical constraint needed
to generate the required oscillations.

It remains to check under which conditions the
assumption of the main theorem holds. In other
words, under which conditions, the subsystem

θ̇1 = θ2

θ̇2 =
1

γ(x∗1, a)

(

−ξ(x∗, a, b, ḃ) + βd(x
∗)
)

has, for the specified target orbit solutions x∗(t),
a bounded solution. This issue, will not be studied
here in detail, but only presented simulation show
that it is indeed the case.

Simulations results. Figures 3, 4, 5, and 6 show
several examples of motion, where the trajecto-
ries converge to the orbit Ωd, for the parabolic



and the nonlinear oscillator target orbits. For the
parabolic orbits, we take any desired parameters
set {Vd, αd, q

d
2}, i.e. Vd = 0.01[Rad2/s2], αd =

0.3286[1/s2], qd2 = π/2[Rad], kV = 50, initial
conditions: qd2(0) = π/3[Rad], a(0) = −1.0072,
b(0) = 0.0083[Rad], and ḃ(0) = 0[Rad/s]. For the
nonlinear oscillator, the following desired param-
eters set was taken : qd2 = 1.1551[Rad], initial
conditions: qd2(0) = 2.1551[Rad], a(0) = −1.0072,
b(0) = 0.0083[Rad], and ḃ(0) = 0[Rad/s].
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Fig. 3. Convergence to a parabolic target orbit
Ωdi.
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Fig. 4. Evolution of b(t) in the case of parabolic
orbit.
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Fig. 5. Convergence to a nonlinear oscillator target
orbit Ωdi.
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Fig. 6. Evolution of b(t) in the case of nonlinear
oscillator target orbit.

5. CONCLUSIONS

We have dealt with the problem of orbital stabi-
lization of underactuted mechanical system. The
case when the number of degrees of freedom is
equal to the number of actuators minus one, has
been treated in a rather general framework. Con-
ditions for the local convergence have been esta-
blished via an implicit adaptive hybrid algorithm.
Possibility of finding an explicit solution has to
be studied case by case. We have presented the
pendubot example for which an explicit algorithm
can be found. The case of the acrobot can also
be treated, but the analytic expressions are more
extensive. This case has not been presented here.
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