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Abstract: The aim of the paper is to develop neural networks technique for solving
some important medical problem. That problem is called ”Blood gases prognosis
values”. The main question, that is considered, is how to predict some parameters
that describe blood gases nature in the future for a nowborn based on a set of
parameters that describe this child now, and in the past. We are expected to
receive some parameter value on the proper level of probability. Copyright c©2002
IFAC
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1. INTRODUCTION

The purpose of this paper is to derive an estimate
of a neural network’s accuracy as an empirical
modelling tool. A model of a physical system has
an error associated with its predictions due to the
dependence of the physical system’s output on
uncontrollable or unobservable quantities. Neural
Network models have been used as a predictor for
different physical systems.

The calculation of second derivatives is required
by recent training and analysis techniques of con-
nectionist networks. That techniques can be used
for the estimation of confidence intervals both for
weights and network outputs. The networks of
sigmoid units, exact calculation of the necessary
intermediate terms requires of the order of 2h+ 2
backward - forwardpropagation passes where h is
the number of hidden units in the network. Those
second derivatives are typically derivatives either
of the network output or of the error function
with respect to the weights. Second derivatives

can be calculated exactly, calculated using ap-
proximation ignoring certain terms, or calculated
using numerical differentiation that interprets the
definition of the derivative numerically by

∂E(x)
∂x

≈ (E(x+ ∆x)− E(x))
∆x

(1)

Second derivatives are important in several differ-
ent contexts. Simple beckpropagation is a first or-
der gradient descent method. Learning speed can
be improved if information from second deriva-
tives is also used, for instance in a Newton-
Raphson type of framework. Since the second
derivatives have to be computed for each weight
update, the speed of the computation is crucial
here. For the huge networks, calculation of the full
Hessian is considered prohibitive. There is another
class of second order optimisation algorithms that
do not require direct calculation of the Hessian
because they operate in an iterative manner. The
conjugate gradient and related algorithms are con-
sidered the most powerful all - purpose minimi-
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sation algorithms. The calculation can also be
used iteratively in the power method to efficient-
ly approximate the principle eigenvectors of the
Hessian. Those method can be described briefly
as: from a random initial assignment v0, compute

ui+1 = Hvi (2)

then minimise ui+1 to a unit vector vi+1, and iter-
ating causes the eigenvectors with smaller eigen-
values to disappear. The speed of training in least
mean square algorithms is related to the ratio of
the largest to the smallest eigenvalues. This ratio
is called the condition number and is also asso-
ciated with the accuracy to which the minimum
can be calculated. The condition number can be
approximated by approximating the largest and
smallest eigenvalues with the power method. Sec-
ond derivatives are also used in a post - training
phase. For example use the Hessian of the error to
simplify the network by pruning weights in order
to archive good generalisation performance. In
Bayesian second derivatives are related to quanti-
ties such as the posterior variance of the network
weights, and also to the description length of the
set of weights used in evaluating the quality of the
set of weights.

2. PROBLEM

Respiratory problems are the most prominent in
pathology of new-borns hospitalised in neonatal
intensive care unit (NICU). Arterial blood gases
(ABG) are good indicators of severity of these
problems. Accurate forecasting of ABG alterna-
tions caused by different factors would be of the
great value in newborn intensive care. It is created
a neural network structure that establishes prog-
nosis of pH, PCO2, PO2, HCO3 based on the
National Information System (NIS) - a computer
database used in NICU Polish - American Chil-
dren’s Hospital in Krakow. Currently over eight
hundred patients are enrolled in the database.
Most of the patient admitted in NICU suffers from
respiratory distress. Respiratory insufficiency is
the leading cause of hospitalisation and mortal-
ity as well. Blood gases analysed in context of
actual respiratory setting to make know severity
of respiratory distress. The values are forecasted
with an error exceeding acceptable value. It is
four neural network structures created to forecast
pH,PCO2, PO2, and HCO3 respectively. Input
data vector is composed of eight values: surfac-
tant (administration of the surface active agent
or not), respiratory rate (RR), peak respiratory
pressure (PIP), friction of inspired oxygen (FiO2),
and blood gases values: pH, PCO2, PO2, HCO3.
Respiratory setting and surfactant administration
is shown in the form of the step function. Blood

gases values are approximated by polynomials. In-
put data is taken with the step 0.1 [h]. Output da-
ta vector contained single blood gases parameter
with a step next to input data. 15 patients’ data
was used for process of neural networks learning,
and 9 other patients’ data was used to test accura-
cy of prognoses. Forecast values were in the limit
of acceptable error. Blood gases values depend on
many factors. Presented methods is able to show a
flow of varying parameters without detailed anal-
ysis of determining factors. Some factors can be
constant. There is birth weight, age, Apgar score
and sex. Some factors are changes step by step.
There is respiratory settings, administration of
medication and presence of infection. Some factors
are continuous. There is: heart rate, haemoglobin
saturation and blood pressure. It is considered
lung mechanical parameters: tidal volume, lung
compliance and airway resistance. The general
conception of neural networks forecasting values
of parameters important in treatment is shown as
follows.

Table 1 Parameter pH, PCO2, PO2, HCO3

mean value and close mean value

parameter mean value close mean value
pH 7.35-7.45 7.125-7.35; 7.45-755

PCO2 40-55 30-40;55-70
PO2 40-50 30-40;50-70
HCO3 21-25 18-21;25-28

Neural networks receives of input parameter val-
ues in the real time from external devices: com-
puter database (NIS), local computer database,
and patient’s monitor. Input file is characterised
by: mean and std.

Table 2 Parameter pH, PCO2, PO2, HCO3

mean and std value

input parameter mean std
pH 7.3 0.08

PCO2 45.7 11
PO2 55.6 21
HCO3 22 3.7

Those parameters are used in neural networks
learning process. The neural networks generates
a prognosis of arterial blood gases values on users
demand. The main goal of the study is to show
that neural networks is able to learn forecast-
ing blood gases values. Four neural networks are
created. Each of the networks consists of three
layers. The first layer formed eight non-linear neu-
rones. The second layer is also formed of non-
linear neurones. Their number of neurones in this
layer is arbitrary chosen. Output layer is formed of
case linear neurone. The archived result is promis-



ing. The archived results were based on assumed
errors of prognosis: pH(0.1), PCO2(10mmHg),
PO2(10mmHg), HCO3(3mmoll). Four tested pa-
tients estimated error did not reach maximum
value of the assumed limit. Results were archived
after input discrete parameters from the hospital
database. The paper presents the application of
neural predictor for Short - Term Forecasting.
We investigate problem of estimating of the confi-
dence intervals for the prediction. We have applied
the neural networks model to few-hour blood gas-
es prediction.

3. PROGNISIS OF BLOOD GASES VALUES

Blood gases values and treatment parameters
flows recorded during a few days of hospitalisa-
tion. Neural networks creation learning process
consists of two sets of the data. A first one con-
tains the data introduced to the first layers of neu-
rones. The second set contains the expected data.
Analysis of the input data characteristics revealed
that the data should be normalised before entering
the first neurone layer. Each sequence of values
of the separate input parameter recorded during
several days was normalised in the simple way.
All input values from the sequence are divided by
the maximum value. High degree of the data dis-
cretisation and time step could also have negative
impact on neural networks learning process. To
reduce this phenomenon all input parameters are
subject to polynomial approximation. The exam-
ple of prognosis blood gases values, the values in
learning vectors is with step 0.1 [h]. The example
of approximated and normalised blood gases value
flows without disturbing information.

Unsatisfactory result is caused by disturbances
in function representing values of the parameters
forming learning data sets and an inappropri-
ate data step. An original data value from the
database is recorded once or few times a day.
Using polynomial method intermediate values is
added. It is allowed to reduce data reading step
to few hours.

The second group of input data is formed by val-
ues of factors, that has an impact on blood gases
values, and they are referred as medical treatment
parameters. The values of first parameter (sur-
factant administration) formed binary sequence,
i.e. 1 means surfactant administration, 0 coded
opposite situation. The values of the other param-
eters represented setting of respirator, and there is
no need for their approximation. Eight sequences
representing input parameters are created. To im-
prove neural networks learning process each of the
sequence is normalised.

Output file is characterised by mean and std.

Table 3 Output parameter pH, PCO2, PO2,
HCO3 mean and std value

output parameter mean std
pH 7.3 0.07

PCO2 44.9 8.2
PO2 56.1 16.8
HCO3 22 3

Initially the period of time was equal to 1.5 hour.

4. CONFIDENCE INTERVAL PREDICTION

The aim of this section is to derive an estimate
of a neural network’s accuracy. Neural networks
models have been used as a predictor. It is also
be used as a method to quantify the confidence
intervals of the predictions from neural networks
models. For a desired degree of confidence (for
a given probability), a confidence interval is a
prediction of the range of a output model where
the actual value exists. With the assumption of
a normal distribution of the errors, confidence
intervals can be calculated for neural networks.

The analysis is extended to include the calculation
of confidence intervals for models obtained from
noisy data. For the given system with output
y = y1, y2, ..., yn the model for the system is given
as f(x,w∗), where: x = x1, x2, ..., xn is the set
of inputs, and w∗ represents the real values of
the set of parameters w, for the function that
models the system. The error εi associated with
the function in modelling the system is assumed
to be independently and identically distributed
with the variance σ2, where the distribution has
the form N(0, σ2). With n observations, where
i = 1, 2, ..., n the system is represented by

yi = f(xi, w∗) + εi, i = 1, 2, ..., n. (3)

The least squares estimate of w∗ is ŵ, that is
obtained by minimising the error function that is
used for neural networks Backpropagation (BP)
algorithm. BP is a common method for minimis-
ing the error function. The predicted outputs from
the model is ŷ

ŷi = f(xi, ŵ). (4)

The error function is given in the form:

i=n∑
i=1

(f(xi, w∗) + εi − f(xi, w))2 (5)

It is assumed that the model gives a good predic-
tion of the actual system behavior. It means that
ŵ is close the real value of the set of parameters



w∗, and a Taylor expression to the first order
can be used to approximate f(xi, ŵ) in terms of
f(xi, w∗) where:

f(xi, ŵ) ≈ f(xi, w∗) + fo (ŵ − w∗) (6)

where

fT
o =(

∂f(xi, w∗)
∂w∗1

,
∂f(xi, w∗)

∂w∗2
, ...,

∂f(xi, w∗)
∂w∗p

)
.(7)

The difference between the real value y of the sys-
tem and the predicted value ŷ gives the expected
value of the error.

The subscript value of o is given to denote the set
of points other than that used for the least squares
estimation of w∗. The difference

yo − ŷo ≈ yo − f(x,w∗)− fTo (ŵ − w∗) =

εo − fTo (ŵ − w∗). (8)

For an error εo with a normal distribution with
a mean of zero and a variance of σ2(N(0, σ2In)),
the distribution of difference ŵ − w∗ can be ap-
proximated to have the distribution

Np(0.σ2 [F (ŵ)T F (ŵ) ]−1)

where: Jacobian matrix F (ŵ) has the form

F (ŵ) =
∂f(x, ŵ)
∂ŵ

=

∂f(x1, ŵ)
∂ŵ1

∂f(x1, ŵ)
∂ŵ2

...
∂f(x1, ŵ)
∂ŵp

∂f(x2, ŵ)
∂ŵ1

∂f(x2, ŵ)
∂ŵ2

...
∂f(x2, ŵ)
∂ŵp

... ... ... ...
∂f(xn, ŵ)
∂ŵ1

∂f(xn, ŵ)
∂ŵ2

...
∂f(xn, ŵ)
∂ŵp


(9)

var[yo − ŷo] ≈

σ2 + σ2 fTo [F (ŵ)T F (ŵ) ]−1)fo (10)

The matrix F (ŵ) has the dimensions n by p
where: n is the number of samples that is used
to obtain ŵ, and p is the number of parameters
wi that composes ŵ. The unbiased estimator of
σ2 is s2 as

s2 =
|| y − f(x, ŵ) ||2

n− p
(11)

The Student t- distribution is given in the form

tn−p ∼
yo − ŷo√

var[yo − ŷo]
≈

yo − ŷo√
s2 + s2fTo (FTF)−1fo

(12)

Hence, the equation

ŷo ± tα/2n−ps
√

1 + fTo (FTF)−1fo) (13)

gives the confidence interval 100(1 − α) for the
predicted value ŷ. The term t

α/2
n−p can be found for

a given α and the degrees of freedom n−p where p
is the number of weights and bias terms employed
by the neural network.

Confidence Interval (CI) for the error is shown
below.

Table 4 Confidence Interval (70 % and 90 %)
for pH, PCO2, PO2, HCO3

confidence 70 % CI 90 % CI
interval (CI)

pH 0;0.35 0;0.6
PCO2 0;5.3 0;10.3
PO2 0;10.2 0;21.9
HCO3 0;1.5 0;2.9

The forecast of pH,PCO2, PO2, and HCO3 for
newborn is presented below.

The patient, for which result is shown (see Ap-
pendix), did not require artificial ventilation. The
difference between forecasted and the real values
were bigger in other newborn who has required
artificial ventilation.

5. RESULTS

It can be seen that results are not quite satis-
factory. Such results might be attributed to bad
selection of input parameters.

Improvement of the results could be achieved by
adding more parameters influencing blood gases
factors. Polynomial values of the gases factors
could be taken with smaller step. The learning
process can be improved due to the fact that
decreasing step for polynomial values implies more
data vectors. In this case there is about 2500
data vectors. It should be also consider the cor-
rectness for selecting patients whose data were
used as a sample for the learning process of the
neural networks. There is a tendency to increase
prognostic error at the end of the approximated
sequence, that is related to the nature of approxi-
mation methods implemented for the time series.
We achieved good prognoses with the error below
assumed value for HCO3 and PCO2, PO2. In the
case of pH prognosis is under of expectation. This
factor is strongly related to PCO2 and HCO3. It
can be concluded that we have received a good
prognosis for two or three parameters. The table



shows results of simulation of neural networks
predictions for next 6 hours.

Table 5 Mean and std parameter value
of pH, PCO2, PO2, HCO3

mean std right
parameter of of results

error error (%)
pH 0.03 0.03 76

PCO2 4.9 6.3 82
PO2 9.6 14.0 55
HCO3 1.4 1.4 69
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APPENDIX

time forecast real forecast real
(min) value value value value

HCO3 HCO3 pH pH
10 23 23 7.35 7.35
20 22 22 7.36 7.36
30 20 20 7.28 7.26
40 22 22 7.35 7.3
50 23 23 7.35 7.34
60 22 22 7.36 7.3
70 19 19 7.27 7.24
80 18 18 7.25 7.23
90 19 19 7.33 7.36
100 20 20 7.33 7.36

time forecast real forecast real
(min) value value value value

PO2 PO2 PCO2 PCO2

10 51 61 39 39
20 51 51 38 38
30 46 34 47 50
40 51 51 40 39
50 85 92 44 44
60 51 51 48 48
70 78 80 52 52
80 80 79 47 47
90 44 44 62 68
100 45 44 57 58



time forecast real forecast real
(min) value value value value

HCO3 HCO3 pH pH
110 20 20 7.36 7.24
120 17 18 7.19 7.2
130 22 22 7.19 7.2
140 22 22 7.25 7.24
150 22 22 7.26 7.23
160 20 20 7.26 7.24
170 22 22 7.29 7.29
180 20 19 7.33 7.34
190 22 22 7.3 7.27
200 22 22 7.36 7.36
210 23 23 7.31 7.32
220 23 23 7.34 7.34
230 23 23 7.23 7.25
240 20 20 7.26 7.26
250 20 20 7.25 7.25
260 20 20 7.25 7.26
270 21 22 7.29 7.29
280 20 20 7.34 7.3
290 23 24 7.22 7.19
300 24 23 7.26 7.26
310 19 19 7.31 7.25
320 24 24 7.27 7.27
330 23 24 7.36 7.36
340 25 25 7.37 7.37
350 25 24 7.37 7.37
360 23 23 7.36 7.36
370 24 24 7.35 7.35
380 24 24 7.34 7.34
390 22 21 7.31 7.3
400 23 24 7.3 7.27
410 23 24 7.27 7.27
420 24 24 7.3 7.3
430 27 27 7.28 7.25
440 27 28 7.42 7.42
450 24 24 7.36 7.36
460 25 25 7.32 7.32
470 24 24 7.38 7.38
480 25 25 7.34 7.34
490 23 23 7.4 7.4
500 24 24 7.37 7.37
510 20 20 7.35 7.35
520 24 24 7.35 7.32
530 25 26 7.38 7.38
540 23 23 7.38 7.38
550 26 26 7.35 7.35
560 23 23 7.34 7.34
570 24 24 7.33 7.33
580 28 28 7.26 7.26
590 31 28 7.35 7.35
600 31 29 7.39 7.34
610 26 22 7.35 7.34

time forecast real forecast real
(min) value value value value

PO2 PO2 PCO2 PCO2

110 50 46 59 66
120 50 56 45 45
130 80 81 51 59
140 51 51 56 57
150 48 48 49 49
160 37 37 46 46
170 72 72 44 44
180 39 39 48 49
190 42 42 43 39
200 48 49 49 49
210 70 70 40 39
220 46 46 48 48
230 45 45 45 43
240 63 63 54 58
250 50 48 49 49
260 40 36 47 51
270 40 44 50 57
280 58 50 49 53
290 53 52 50 54
300 41 42 50 55
310 50 50 47 50
320 57 57 53 60
330 65 65 48 57
340 44 44 50 62
350 52 52 50 54
360 31 31 44 45
370 63 63 45 44
380 60 53 39 39
390 50 50 42 42
400 53 53 43 43
410 60 63 48 50
420 80 80 42 49
430 45 45 52 54
440 45 45 51 56
450 45 40 56 65
460 43 40 43 43
470 42 42 50 53
480 45 45 44 52
490 52 52 41 45
500 51 51 48 48
510 40 40 40 40
520 40 40 42 42
530 60 62 46 46
540 66 66 39 39
550 46 46 49 51
560 50 50 52 56
570 47 47 43 43
580 50 50 50 52
590 38 39 48 49
600 37 38 57 62
610 39 39 54 56


