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Abstract: This paper addresses the simultaneous localization and mapping problem in an
environment where indistinguishable landmarks can be detected. A set theoretic approach
to the problem is presented. Algorithms for measurement-to-feature matching, estimation
of landmark positions, estimation of robot location and heading are derived in terms of
uncertainty regions, under the hypothesis that errors affecting all sensor measurements are
unknown-but-bounded. The proposed technique is validated in an experimental setup.
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1. INTRODUCTION

The problem addressed in this paper is self-localization
of an autonomous mobile robot. The considered sce-
nario is that of a vehicle equipped with odometric
and exteroceptive sensors, moving in an environment
where indistinguishable landmarks are present. The
robot has to detect as many landmarks as possible,
perform measurements with respect to them, associate
each measurement to the corresponding landmark and
exploit the correctly matched measurements to esti-
mate its position and orientation.
Landmark-based robot localization has been widely
investigated in the last decade. A great variety of so-
lutions is now available for the case in which land-
mark position is a priori known (i.e., an environ-
ment map is given). The proposed localization tech-
niques rely on several different approaches, includ-
ing Extended Kalman Filtering (EKF) (Leonard and
Durrant-Whyte, 1992), Set Membership (SM) estima-
tion (Garulli and Vicino, 2001), mixed statistical/set-
theoretic filters (Hanebeck and Schmidt, 1996) and
many others.
The problem turns out to be much harder when an
environment map is not available and the robot has
to estimate both landmark and its own position. This
is the so-called Simultaneous Localization And Map
building (SLAM) problem, which has been recently
addressed via EKF (Castellanos and Tardos, 1999),
Markov localization (Thrun et al., 1998) and SM tech-
niques (Di Marco et al., 2001b).
In this paper, a set-theoretic approach to the localiza-

tion problem is adopted. Under the assumption that
all errors affecting sensor measurements and robot
dynamic model are unknown-but-bounded, set-valued
estimates of robot position and orientation are com-
puted. Both distance and angle measurements are con-
sidered. It is shown that SM uncertainty representation
can be exploited to obtain a correct matching between
measurements and detected landmarks. Moreover, the
proposed approach is naturally extended to tackle the
SLAM problem, by including landmark positions in
the state vector to be estimated. A SM algorithm for
dynamic localization is constructed, exploiting state
decomposition and set approximations. The algorithm
is validated in an experimental setup, considering both
cases of known and unknown environment map.

2. SET-THEORETIC LOCALIZATION

2.1 Set membership pose estimation

Let us consider a vehicle navigating in a 2D environ-
ment, and let p(k) = [x(k) y(k) θ(k)]′ ∈ Q , R

2 ×
[−π π] be the pose of the agent at time k (where
x(k), y(k) is the robot position, and θ(k) represents
the robot heading w.r.t. the positive x-axis). Under the
assumption of slow robot dynamics, if translation and
rotation measurements u(k) from odometric sensors
are available, the vehicle dynamics can be described
by the linear discrete-time model

p(k + 1) = p(k) + u(k) + Gw(k), (1)
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where w(k) ∈ R
3 models the error affecting measure-

ments u(k) (possibly shaped by a suitable matrix G).
The robot is equipped with exteroceptive sensors, pro-
viding measurements on the environment. It is as-
sumed that the environment can be described by land-
marks, i.e. indistinguishable features represented by
points on a plane. When navigating in a 2D envi-
ronment, the robot performs two kinds of measure-
ments: distance from a landmark and angle between
robot orientation and the direction of a landmark (see
Fig. 1). Several sensors (such as laser rangefinders and
stereovision systems) provide both kinds of informa-
tion. These measurements can be modeled as nonlin-
ear functions of the robot pose p(k) and the position
li = [xli yli ]

′ of the sensed landmark, i.e.

Di(k) = d(p(k), li) + vdi
(k)

Ai(k) = α(p(k), li) + vαi
(k)

i = 1, . . . , m, (2)

where m is the number of measurements performed
at time k, Di(k) and Ai(k) are the actual readings
provided by the sensors at time k; vdi

(k) and vαi
(k)

are measurement noises affecting the distance and the
heading measurements.
The dynamic localization problem concerns computa-
tion of an estimate p̂(k) of the vehicle pose p(k), given
an initial pose estimate p̂(0) and model (1)-(2).
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Fig. 1. Distance d and relative orientation α of robot p

w.r.t. an identified landmark li.

This problem can be tackled in different ways, de-
pending on the hypotheses on the unknown distur-
bances w, vdi

and vαi
. When statistical assumptions

on the errors are considered, the estimate of the
pose can be computed via the extended Kalman filter
(Leonard and Durrant-Whyte, 1992), or using Markov
localization and Bayes rules (Thrun et al., 1998).
However, real-world uncertainties may include also
systematic errors or nongaussian, non white noise,
whose statistical properties are generally very difficult
to estimate. In this paper, a different approach is pre-
sented, based on the assumption that the disturbances
are unknown-but-bounded, i.e.

|wi(k)| ≤ εw
i , (3)

|vdi
(k)| ≤ εvd , |vαi

(k)| ≤ εvα (4)

where εw
i , εvd and εv are known positive scalars. We

observe that the above bounds need not be be the

same for different time instants k and/or for different
measurements d and α.
Let us introduce the notion of feasible state vector.
Given sensor readings Di(k), Ai(k), i = 1, . . . , m,
the feasible states are those compatible with all the
measurements, i.e. the states belonging to the mea-
surement set

M(k) =
m
⋂

i=1

Mi(k). (5)

where

Mi(k)={p : |Di(k)− d(p(k), li)| ≤ εvd

and |Ai(k)− α(p(k), li)| ≤ εvα} .
(6)

Notice that, if assumptions (4) are verified, the set M
is not empty. The dynamic localization problem can
now be formulated in a set-theoretic framework.
SM localization problem: Let P (0) ⊂ Q be a set
containing the initial pose p(0). Given the model (1)-
(2), find at each time k = 1, 2, . . ., the feasible pose
set P (k|k) ⊂ Q containing all vehicle poses p(k)
compatible with the dynamics, the assumptions (3)-
(4) and the measurements collected up to time k.

For any distance measurement Di(k), the correspond-
ing measurement set is a portion of Q whose shape
is a cylindrical circular corona. On the other hand,
relative orientation measurements Ai(k) provide sets
that are portions ofQ delimited by two helicoids. The
intersection of two of these sets, which corresponds
to (6), is given by the roto-translation of a sector of
corona, around and along the i-th landmark position
axis (see Fig. 2).
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Fig. 2. Measurement set Mi associated to the pair of
measurements (2).

The solution to the SM localization problem is given
by the following set-valued recursion

P (0|0) = P (0), (7)

P (k + 1|k) = P (k|k) + u(k) + G∆wB∞, (8)

P (k + 1|k + 1) = P (k + 1|k) ∩M(k + 1), (9)

where ∆w is a diagonal matrix with elements εw
i on

the diagonal and B∞ is the unit ball in the ∞ norm.
The main property of recursion (7)-(9) is to provide,
for each k, all the pose values that are compatible



with all the available information: the true pose is
guaranteed to belong to sets P (k|k), and the size of
such sets gives a measure of the uncertainty associated
to the estimate. Unfortunately, exact computation of
such sets is generally a prohibitive task, because the
measurement setM(k) is the intersection of nonlinear
and nonconvex sets. Nonetheless, the problem can be
tackled by applying set approximation techniques, as
it will be shown in Section 3.

2.2 Measurement matching

The localization algorithm provided by equations (7)-
(9) assumes that the observed landmarks are distin-
guishable, i.e., the robot is able to correctly associate
each measurement to the corresponding measured fea-
ture. However, if sensors provide only metric infor-
mation, all landmarks are indistinguishable, hence
matching between measurements and landmarks is of
paramount importance. In the set-theoretic approach,
one can exploit the feasibility property to evaluate
all the admissible matchings, i.e. all the associations
measurement-landmark that are compatible with the
assumptions on the disturbances.
In the following, subscripts xy and θ denote the pro-
jection of a set or a vector on the robot position and
orientation subspaces, respectively. At time k, the pre-
dicted robot uncertainty set, before measurements are
taken, is given by P (k|k − 1). On the other hand,
measurements Di and Ai guarantee that, in a robot-
centered 2D reference system, landmark li lies in the
set

Mli(k) =
{

l ∈ R
2 : |Di(k)− d(0, l)| ≤ εvd

and |Ai(k)− α(0, l) + θ̂(k)| ≤ εvα + εθ̂
} (10)

where [θ̂ − εθ̂, θ̂ + εθ̂] = Pθ(k|k − 1). Notice that
the current robot heading uncertainty Pθ(k|k − 1)
has been exploited in (10). The set in which the i-
th landmark is guaranteed to lie, on the basis of the
robot uncertainty and measurements taken at time k,
is Pxy(k|k − 1) + Mli(k). As a consequence, any
landmark lj , j = 1, . . . , n such that lj ∈ Pxy(k|k −
1) + Mli(k), can be associated to the i-th measure-
ment (see Fig. 3). By repeating the process for each
pair of measurements (2), it is possible to build a
matching graph (see Fig. 4). Even if some measure-
ments are ambiguous, it is often possible to find a
unique admissible solution to the matching problem.
Indeed, the problem of determining the existence of
a perfect matching is widely studied in the operative
research field, and efficient algorithms are available to
determine the solution of such problems (Korte and
Vygen, 2000). Uniqueness of the perfect matching can
be tested by removing from the associated graph, one
at a time, each solution branch, and verifying that no
other solution is available. In principle, even if the
solution to the matching problem is not unique, the
algorithm described in (7)-(9) is still appropriate to
solve the localization problem: as a matter of fact, for
any possible perfect matching µ at time k, one has to
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Fig. 3. Uncertainty sets can be employed to perform
matching between measurements and features.
Measurement i is ambiguous, since it can be
associated both to landmark l2 and to landmark
l3.

evaluate the corresponding measurement set Mµ(k),
defined as in (5). To account for all possible distinct
choices in the matching step, one has to replace equa-
tion (9) with

P (k + 1|k + 1) = P (k + 1|k) ∩ [∪µM
µ(k + 1)] ,

where set ∪µM
µ replaces the single measurement

set available when landmark identification is a priori
known. Notice that, when performing the matching,
robot uncertainty needs to be considered in order to
correctly determine all the admissible perfect match-
ings. Once that these matchings are available, the eval-
uation of each measurement set Mµ does not depend
on the robot position uncertainty. Hence, some of the
sets Mµ may turn out to be empty, thus allowing to
deem that matching µ is not correct.

2.3 Simultaneous localization and mapping

In real-world applications, landmarks position may be
unknown, e.g. when the robot is used for exploration
and mapping of unknown environments. This calls
for the solution of the Simultaneous Localization And
Map building (SLAM) problem.
When landmark locations are not known, their posi-
tion can be included among the quantities that must
be estimated at each time step. As a consequence,
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Fig. 4. Example of matching graph: three measure-
ments are ambiguous (A), one is spurious (S),
and two are compatible with only one landmark
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in addition to the robot motion model (1), one has
to introduce also a model for the landmarks. The
resulting state estimation problem involves a system
whose state dimension can be very large, as it de-
pends on the number of remarkable features present
in the environment, which may vary in time. When n

landmarks are considered, the state vector is given by
ξ(k) = [p′(k) l′1(k) . . . l′n(k)]′ ∈ R

(3+2n). If static
landmarks are used, the state update equation is

ξ(k + 1) = ξ(k) + E3u(k) + E3Gw(k), (11)

where E3 = [I3 0 . . . 0]′ ∈ R
(3+2n)×3.

Under the SM assumption on the disturbances, the
measurement set is still given by (5) where

Mi(k) = {ξ : |Di(k)− d(p(k), li)| ≤ εvd

and |Ai(k)− α(p(k), li)| ≤ εvα} .

Then, the SLAM problem can be formulated as fol-
lows.

SM SLAM Problem: Let Ξ(0) ⊂ R
(3+2n) be a set

containing the initial position of the vehicle and the
landmarks ξ(0). Given the model (11),(2), find at each
time k = 1, 2, . . . the set Ξ(k|k) of state vectors
ξ(k) which are compatible with the robot dynamics,
the assumptions (3)-(4) on the disturbances, and the
measurements collected up to time k.

The solution to the above problem is still provided
by the algorithm outlined by equations (7)-(9), where
the robot feasible pose set P (k) is replaced by the
extended feasible state set Ξ(k).
Concerning the initialization of the algorithm, a pos-
sible choice is to set Ξ(0|0) = R

(3+2n). Since all
measurements are relative, one is allowed to choose
an arbitrary reference system. Hence, without loss
of generality, it is possible to set the origin of the
reference system in the initial position of the robot,
choosing as x-axis the robot initial heading.

3. SET MEMBERSHIP ALGORITHM FOR
GUARANTEED LOCALIZATION

The algorithm solving the set membership pose es-
timation problem requires the computation of highly
complex sets P or Ξ. Set approximation must be pur-
sued, in order to devise algorithms that, by performing
a tradeoff between complexity and accuracy, prove
themselves suitable for real-time applications. In par-
ticular, approximating sets belonging to a class R of
regions with simple, fixed structure, will be consid-
ered.
The structure and size of the approximating regions
R are chosen so that recursive updating according
to (7)-(9) is performed through efficient algorithms.
Moreover, at each time instant k, the approximating
regions R(k + 1|k), R(k|k) must contain the cor-
responding exact sets P (k + 1|k), P (k + 1|k + 1)
(Ξ(k + 1|k), Ξ(k + 1|k + 1), respectively) so that the
true state vector p(k) (ξ(k)) is guaranteed to belong to

the approximating set.
To satisfy the above requirements, approximations are
introduced at different stages of the state estimation
procedure: (i) decomposition of the state vector into
subsets of state variables; (ii) guaranteed approxima-
tions of the true feasible subsets through classes of
simple regions.

3.1 Set membership estimation of state subvectors

The state vector can be decomposed into different
subsets of variables: robot position x(k), y(k), robot
heading θ(k) and (in the SLAM case) landmark posi-
tions li(k), i = 1, . . . , n.
Let Ξxy denote the feasible robot position set, Ξθ the
feasible robot heading set, and Ξli denote the feasible
i-th landmark position set. In addition, let Ξxy(0),
Ξθ(0) and Ξli(0) be the corresponding initial sets.
Initialization (7) splits into

Ξxy(0|0) = Ξxy(0), (12)

Ξθ(0|0) = Ξθ(0), (13)

Ξli(0|0) = Ξli(0). (14)

The time update equation (8) boils down to

Ξxy(k + 1|k) = Ξxy(k|k) + uxy(k) +

+Gxy∆wxy
B∞, (15)

Ξθ(k + 1|k) = Ξθ(k|k) + uθ(k) + Gθ∆wθ
B∞, (16)

Ξli(k + 1|k) = Ξli(k|k). (17)

The advantage of state decomposition is obtained in
the measurement update step (9), since it allows for
sequential update of simple 2D and 1D sets. The ap-
proximated measurement update process, described in
Fig. 5, can be employed. Efficient algorithms to sep-
arately perform position and orientation refinements
are available (details are reported in (Di Marco et
al., 2001a)). First, all the orientation measurements
are processed in order to reduce the uncertainty on
robot orientation (thus allowing for smaller uncer-
tainty sets (10)). Then, distance and orientation mea-
surements are processed to get a set of robot positions

Refine robot heading set using robot and

and orientation measurements
landmarks uncertainty sets,

Refine robot position set using distance and

Refine landmark positions sets, using distance
and orientation measurements, robot updated

position and heading sets

orientation measurements, robot heading set
and landmark uncertainty sets

Fig. 5. Modified measurement update step, after state
decomposition.



that are compatible with all the information about
landmarks. During this step landmarks uncertainty is
not reduced. In the third step (performed in the SLAM
case) the same measurements are reprocessed to (pos-
sibly) tighten the uncertainty set of each landmark.
Since the evaluation of each set is based on the previ-
ously determined approximations, a further refinement
of the estimated sets can be achieved by repeating
the three step measurement update. The guiding idea
of this approach is similar to the Baum-Welch algo-
rithm (Thrun et al., 1998), where map and robot loca-
tion are alternatively updated by maximization in the
likelihood space. Nevertheless, in this case, no prob-
abilistic meaning is attributed to the measurements:
this allows one to reprocess the same measurements
several times, to iteratively reduce the size of the ap-
proximated uncertainty sets.
The proposed approach allows one to simplify the
measurement update process, but it also introduces an
approximation because information about correlation
between robot and landmark position is lost.
We point out that the approximated measurement up-
date described in this section is more conservative than
the exact set membership algorithm (7)-(9). On the
other hand, notice that the set Ξxy(k|k) ⊗ Ξθ(k|k) ⊗
Ξl1(k|k)⊗ . . .⊗Ξln(k|k), where⊗ denotes the Carte-
sian product, is guaranteed to include the true feasible
set Ξ(k|k).

3.2 Set approximation

Since we are interested in fast (on-line) algorithms,
which are able to provide regions guaranteed to con-
tain the robot pose (and possibly landmark positions),
outer approximation of the feasible sets are looked for.
The approximating sets belong to classes of simple
structure sets. The choice of the specific element in the
approximating class is performed by selecting mini-
mum area sets in the chosen class containing P (k +
1|k), P (k + 1|k + 1) (the same holds for sets Ξ). Let
us consider a class of regions R of fixed structure,
and let us denote by R{Z} the minimum area set in
the class R containing the set Z . For the general set
membership localization procedure described by (7)-
(9), the desired outer approximation is given by the
following recursion

R(0|0) =R{P (0)} (18)

R(k + 1|k) =R{R(k|k) + u(k)+

+G∆wB∞} (19)

R(k + 1|k + 1) =R{R(k + 1|k) ∩M(k + 1)}.(20)

Notice that, with the introduction of the approximat-
ing class, all the sets operations in (18)-(20) are now
performed on sets of known and simple structure. The
proposed approximation algorithm can be easily ex-
tended to the SLAM case, including the decomposi-
tion in subvectors proposed in Sect. 3.1. In this case,
the desired approximation is obtained computing the

outer set R for each set provided by equations (12)-
(17).
The choice of the class R of approximating re-
gions is performed taking into account the trade-
off between accuracy and computational complexity.
Common choices found in literature are ellipsoids
(Hanebeck and Schmidt, 1996), boxes and parallelo-
topes (Di Marco et al., 2001b). Fast algorithms, per-
forming set sum and outer approximation required
by (19), are available (Garulli and Vicino, 2001).
Moreover, algorithms providing suitable approxima-
tions of measurement sets have been developed for
distance and angle measurements (Di Marco et al.,
2001b). These results allow one to devise computa-
tionally efficient algorithms providing guaranteed set-
valued solutions to the localization problem.

3.3 Computational complexity

With respect to the number of landmarks, the proposed
SM localization procedures perform a fixed number
of operations for each measurement pair, i.e. for each
of the m landmarks detected and correctly associated
to the corresponding measurements, at time k. Since
m ≤ n (the total number of landmarks), the com-
plexity at each time step is at most O(n). Notice that,
thanks to state decomposition, the basic tasks of the
measurement update step are approximations of 2D
regions via simple sets like boxes or parallelotopes
(a typical example being the computation of the min-
imum area box containing the intersection between
a box and a sector of corona), which can be done
very efficiently evaluating suitable functions on a fi-
nite number of points.

4. EXPERIMENTAL RESULTS

In order to test the proposed algorithm in a real-world
setting, several experiments with the mobile robot No-
mad XR4000, equipped with a SICK LMS 200 laser
rangefinder, have been carried out. In a first set of
experiments, the robot was programmed to follow a
nominal path in a room with 10 artificial landmarks
(whose positions were available to the robot) using
only information provided by the encoders. Period-
ically, laser scans of the environment were taken in
order to estimate the vehicle pose. Boxes have been
used as approximating sets. To allow for landmark
matching, a bounded region for the initial pose was
used, assuming R(0) equal to a 3D box of sides
1m, 1m and 10◦, respectively. The odometry error
bound was set to εw = [0.25m 0.25m 5◦]′, while
εvd = 0.05 m was used as distance measurement
error bound (from the rangefinder data sheet). Bounds
on the angular measurement errors were obtained di-
rectly as a byproduct of landmark extraction phase.
Fig. 6 shows the result of a typical experiment. As
expected, odometry information (dashed line) rapidly
drifts away from the real trajectory (solid line). The
proposed algorithm provides an efficient method for
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Fig. 6. Localization experimental results with 10 land-
marks (*): (a) nominal trajectory (dashed line),
true trajectory (solid line), estimated trajectory
(dash-dotted line); (b) magnified view of the top
part of the path, with uncertainty position region
(solid box).

an accurate estimation of the vehicle pose. In prac-
tice, the estimated trajectory (dash-dotted line) is not
distinguishable from the real one (the average posi-
tion and heading errors are less than 1 cm and 0.2◦).
Moreover, the associated uncertainty regions are very
small, with average values of 150 cm2 and 3.1◦ for
the position and heading, respectively. Notice that the
nominal trajectory is often outside the estimated fea-
sible set (see Fig. 6b). Due to the sensor used to ex-
tract environment information, only a halfplane of the
whole surrounding environment was visible at a given
time. This means that at each measurement step only
a subset of the landmarks was detected. Nevertheless,
the proposed matching strategy allowed to correctly
associate every landmark to the corresponding mea-
surements, so that all the detected landmarks could be
used in the localization procedure.
Also the SLAM algorithm was tested in a similar sce-
nario, where landmark positions were unknown. The
result of a typical experiment is reported in Fig. 7;
in this case, the average robot uncertainty regions
are 0.18 m2 (position) and 9◦ (heading). Landmark
uncertainty strongly depends on the pose uncertainty
affecting the vehicle at each time instant the landmark
is detected.
Concerning the computational burden, a non-optimized
Matlab code, performing a typical localization step
in presence of 7 landmarks, took about 0.1 s on a
1.3 GHz Athlon processor, thus confirming the suit-
ability of this technique for real-time applications.

5. CONCLUSIONS

The set-theoretic approach presented in the paper is
able to cope with both localization based on a given
map and the much harder SLAM problem. The use
of indistinguishable landmarks is allowed, because
the robot can exploit the SM uncertainty representa-
tion to associate each collected measurement to the
corresponding landmark. The use of set approxima-
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Fig. 7. SLAM experimental results with 9 landmarks
(◦): (a) true trajectory (dashed line), estimated
trajectory (solid line); landmark uncertainty re-
gions (dashed boxes); (b) Robot heading uncer-
tainty bounds.

tion techniques exploiting the specific geometry of the
involved sets, lead to limited complexity algorithms
which can be employed in real-time experiments, like
those presented in Section 4.
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