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Abstract: This work presents another concept of observabilit y in nonlinear systems, when
the states of these types of models are described using a representation by interval
numbers. This approach is an extension of classical concepts of nonlinear observabili ty,
called ε-observabili ty and is based on a notion of the neighborhood of a state with a given
precision of epsilon. Our proposal includes the notion of an indistinguishable trajectory
by intervals applied to the IMHSE method, which is the basic concept used to construct
the notions of observabil ity that will be presented. Copyright © 2002 IFAC
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1. INTRODUCTION

Classical observabili ty properties are described using
the notion of undistinguished states in n�

. This type
of proposal can be found for example in (Hermann
and Krener, 1977). In this reference, a notion of
observabili ty of nonlinear systems is given as the
possibili ty of reconstructing the value of the state x
to the instants 0t , starting from simple knowledge of

output evolutions and control law over an interval of
time [ [ [ [0 0 0 0 max, ,t t T t t T+ ⊂ + .

Frequently, real systems are represented in the
following form by nonlinear models:

( , )
(.) :

( )

x f x u
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 =î

∑
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Where nx ∈
�

 is the vector of states, nu ∈
�

is the
vector of input (or the external applied control),

py ∈
�

is the vector of output (measurable

parameters of the systems), and f and h are known
nonlinear functions. In other words:

(.) : n m pΣ × →
� � �
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Where 0( | )y x t  is the trajectory of the system,

starting from an initial condition 0x  to time t.  When

interval arithmetic is used to describe (.)Σ , (2) is

replaced by (3), i.e. (.) : n m pΙ × →∑
� � � � � �

      [ ]{ } { }0 0 0 1 0( , ) : , ( ), ( | )y

u
t X X u t t t t Y X tΙ ∈ →∑

(3)

0( , )y

u
t XΙ∑

 : is the output trajectory of the systems by

interval numbers, starting from a initial condition  0x

to time t, ( [ [0 0 max,t t t T∈ + ), under the control law u.

 An interval [ , ]a bΙ =  is a closed, bounded and

connected set of real numbers. Let a box nB ⊂
��

 be
a Cartesian product of n intervals. The set of all
boxes of n�

is denoted by n��
 (interval real

numbers). The width of an interval vector B is
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defined as 
1,...,

( ) { }i i
i n

w B max b a
=

= − . See (Hansen, 1992)

for a description of this topic.

Remark 1. The ideas presented are general. They
have, however, been proved from a numerical
standpoint using interval arithmetic.

A graphical form of (2) and (3), can be found in
figure 1.

Fig. 1.  Application of (.)Σ  and (.)ΣΙ over an initial

condition 0x  and 0X

This paper is organized as follows: the introduction
is followed by a presentation of the ε-observabili ty
concepts. Section 3 presents the observabil ity
property applied to observable and non-observable
systems. An observability index by interval numbers
is proposed in section 4. The IMHSE method is then
briefly described in section 5. Finall y, results from
the application of ε-observabili ty to the result of
estimation by intervals of state variables are
presented and discussed.

2. NONLINEAR ε-OBSERVABILITY AND
ε-INDISTINGUISHABILITY

In this section the system (.)ΣΙ  is described as in the

last section. One of the important characteristics in
systems using interval numbers is the notion of
indistinguishable states, i.e. states described by
interval numbers that give an interval
indistinguishable output (with a precision that can be
arbitrarily small).

A notion based on the distance of the output
trajectories, for any precision of cuts of the space of
states, seems more suitable to us (considering the
possibili ty that the computer effort to distinguish
between two points is substantial).

Proposal I. (ε-indistinguishabili ty). Let V be any
subset of n��

, as in figure 2. V is the set of all states
(interval vectors) cut with a precision of epsilon (for
simplicity and without loss of generali ty, the cuts
will be considered regular over the admissible
domain).

1) 1 2,x x V⊂ , nV ⊂
��

2) { } { }( ) ( )VMax w V Max w x ε= ≤

Fig. 2. Indistinguishable states in V.

A pair of points 1x  and 2x  are indistinguishable to a

precision of ε, if the output trajectory of the system
(starting from these points) is bounded by α, when
the external control u is applied to the systems. In
other words when 1x  and 2x  produce the same

indistinguishable output by intervals for every
admissible input.
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Proposal 1 is shown in graphical form in figure 3.

Figure 3.α-neighborhood  over the system output.

Proposal II . (ε-Observabili ty). (.)ΣΙ is observable, if

the following proposition is true.
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If 0 , , 0, ( , , )nx δ ε α ε δ α∀ ∈ ∀ > ∃ ≥ ∈
� �

 such

that:

 
0 0( , ) ( , )y y

u u
t x t x x xα δΙ − Ι < ⇒ − ≤∑ ∑

(5)

Remark 2. A system is 0-observable (classic
definition in n�

, see (Hermann and Krener, 1977)
for a fuller discussion of this point) when:

0 0( , ) ( , ) 0y y

u u
t x t x x xΙ − Ι ≡ ⇒ ≡∑ ∑

Proposal 2 is shown graphically in the following
figures.

Fig. 4.: δ-neighborhood of x over the admissible
domain.

Figure 5. A α-bounded output trajectory implies a
δ-neighborhood of x over the admissible domain.

Remark 3. Notice that in some cases it is necessary to
work for a long time, i.e., a very significant computer
effort may be necessary to distinguish the points over
the admissible domain. When this is the case, these

points are “weakly distinct points.” In theory, weakly
distinct points exist; from a practical point of view by
interval numbers, these types of states can be
considered as indistinguishable points for a given
precision of epsilon.

3. REDUCTION OF THE ε PRECISION AROUND
THE REFERENCE

1.1 Observable systems

The observabili ty property implies that if ε becomes
smaller and smaller, the output trajectory contracts
towards a smaller α-bounded trajectory that is
contained within itself. However, also the
neighborhood around x0 contracts towards a smaller
δ-bounded neighborhood contained within itself,
such that δ≥ε. In other words:

If 1 2 1 2 1 2ε ε α α δ δ⇒ ∧	 	 	 . This can be

represented graphically as:

Fig. 6. ε-observabili ty property over an observable
system.
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1.2 Non-observable systems: Case 1

This is a system with two indistinguishable subsets.
Obviously the represented system is a non-
observable system.  The reason is because there are
two different subsets (in the case of real numbers,
there are two points) over the admissible domain that
give the same bounded output trajectory (as
described in section II) . Notice that the width of the
set V2 is similar to the width of the set V1 even if the
ε-precision is reduced drastically. In other words, if

1 2 1 2 1 2ε ε α α δ δ⇒ ∧ ≈� � .

Fig. 7. ε-observabili ty property over a non-
observable system with two solutions (subsets).

1.3 Non-observable systems: Case 2

This case represents a non-observable system with
infinite solutions, i.e., a system with a subset in
which many different indistinguishable states are
contained. As in section 1.2, the width of the set V2 is
similar to the width of the set V1 even if the ε-
precision is reduced drastically. Here also:
if 1 2 1 2 1 2ε ε α α δ δ⇒ ∧ ≈� � .

Fig. 8. ε-observabili ty property over a non-
observable system with a set that encloses many
different states as solutions.
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4. OBSERVABILITY INDEX

In an observable system, people also want to know if
there is sufficient ampli tude of the link between
states to permit estimation of these states by interval
numbers. Our aim is to propose an index number
called Numerical observabilit y index denoted by INO.
The main characteristic of this index is to know the
width of the neighborhood of states in the subset V.
In other words, this work is concerned with an index
that is the ratio computed for the level δ (of each
states variable) obtained for a given margin of α on
the output trajectory over an admissible domain. In
other words:

If 
0 , (.), , 0, ( , , )n

i i i i ix x V δ ε α ε δ α∀ ∈ Ι ∈ ∀ > ∃ ≥ ∈
� �

(i:1
 n) such that:

  
0( / ) ( / )i o i iy x t J x t x xα δΩ− < ⇒ − < (6)

In order to clarify (6), a 2D subset will be used as an
example: this is shown in the next figure:

Fig. 9. Subset 2V ⊂ ��
, where V is the set of

indistinguishable points by interval numbers of
(.)ΣΙ .

In this context, the following proposals can be given:

Proposal III . (Numerical observabili ty index 1).  Is
defined by each state variable considering (6), as an
index that is the ratio computed for the level δi

obtained for a given margin of α on the output
trajectory.

max( ) ( )i
i w x

α απ
δ

= = (7)

Proposal IV. (Amplitude factor).  Is defined by each
state variable considering (6), as the ratio computed
between the ampli tude and the width of the
admissible domain for this state variable.

The normalized ampli tude factor is given by:

( )
i

iw

δψ =
Ω

(8)

Proposal V. (Occupation factor).  Is defined as a
volumetric index for the subset of indistinguishable
states, that is:

1

max

n

i
i

n

δ

δ
=Γ =

∏
(9)

Proposal VI. (Numerical observabil ity index 2).  Is
defined as a compromised index between the
ampli tude factor and the occupation factor.

( )1
n

NO
i

I ψ= Γ ⋅ −∏ (10)

In other words:

1

1max

1
( )

n

i n
i i

NO n
i i

I
w

δ
δ

δ
=

=

 
= ⋅ − Ω 

∏
∏ (11)

The following properties (from (11)) can be
demonstrated easil y using interval arithmetic:

a)  NOI  is bounded by  [0 1], i.e., 0 1NOI≤ ≤ .

b)  If  0NOI =  then  the control law ( u(t) in (1)) is  a

singular input.
c) If the system is observable, the NOI  converge to

the maximal possible value, i.e., 1NOI = .

5. STATE ESTIMATION BY INTERVALS

IMHSE converts the problem of state estimation
from a dynamic system into a static problem of
nonlinear optimization. The main purpose of the
technique is to find the value of a vector of states at
the start time sh. The goal is to minimize the
difference between the simulated output of the
system, and the measured output, which corresponds
to the experimental measurements. This is then
converted into the minimization of a nonlinear
function as (12) over the time horizon.  IMHSE can
be formulated as a nonlinear programming problem
with the following structure:

Minimize (globally)
11

( )
2

sh lh
T

sh j j
j sh

J x Wν ν
+ −

=
= ⋅ ⋅∑ (12)

Subject to:

[ ] [ ] [ ]
[ ] [ ]

( , )
(.) :

( )

x f x u

y h x

 =ΙΣ 
=�

�

nx ∈ Ι �

(13)

Where (12) corresponds to the objective function,
(13) is the interval nonlinear model described by (1)
over an admissible domain in n��

. In (12) v
corresponds to an equation of remainders and is
defined as ˆj j jv y y= −  and lh is the horizon length.

Remark 4: A complete description of the IMHSE
globally convergent method, the involved global
optimization technique and the interval algorithms
used are explored and can be found in (Valdés-
González and Flaus, 2001).
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5.1 Observabilit y by intervals in IMHSE

It can be seen that the system (1) is observable over
the prescribed horizon, if and only if the solution to
the nonlinear optimization problem (12) at the
beginning of the defined time horizon exists and is,
in addition unique, according to the classical
definition of observabil ity. In other words, different
states give different output trajectories. However,
with IMHSE if more than one state is found as a
result of the global optimization problem at the
beginning of the horizon (there are many different
indistinguishable states that generate the same
bounded trajectory of output as described in section
2), the system will not be observable.  Theoretically,
it is possible to show that for the IMHSE method,
global observabili ty exists over an admissible
domain (Ω), if the injection property for ( , )y

u t xΣΙ  is

true for each step, i.e., when we shift the horizon in
one step, see (Valdés-González and Flaus, 2001).

5.2 Application to a generic fermentation process
over a finite horizon

The bioprocess considered works in batch mode. The
dynamic nonlinear model describes this kind of
bioprocess as follows:

( )

( )

X S X

S
S X

µ
µ

γ

= ⋅

= − ⋅

�

� (14)

Where X represents the concentration of biomass in
the reactor (g/l) and S represents the concentration of
the substrate (g/l). The term µ(s) is called the specific
growth rate of the biomass, is expressed in (1/h), and
is modeled by the following hybrid mixed
formulation:

IF 2.5S <
3( ) 0.064 10S Sµ −= ⋅ ⋅

ELSE

( ) 0.16Sµ =

ENDIF

(15)

The output model in the case of aerobic processes is
combined with the respiration of micro-organisms,
and the gaseous balance calculated allows the rate of
respiration to be evaluated, which is typically of the
form (where a is generally greater than b):

( )( )y a S b Xµ= ⋅ + ⋅ (16)

The goal is to estimate the concentrations of biomass
and substrate from the output measurements of the
process (simulation). In this study, the process is
considered under the following initial condition for
the state and the parameters: x(0)=0.15 (g/l),
s(0)=4.9 (g/l), a=0.01, b=1 and γ=0.8. The solution
space Ω in the global optimization problem for X

and S for this test is [ ]0 4.5X = , [ ]0 5.5S =  and

X SΩ = × .

Remark 5: In this work, the method used assumes the
non-linear model is known exactly, i.e., it does not
consider model uncertainty. However, arithmetic by
intervals enables us to define (if required) the
parameters as interval numbers, which will give
another type of representation of the uncertainties of
the real model.

Application of IMHSE over the systems described by
(14)-(16) shows that the model involved is a non-
observable system. This is due to the fact that there
are many different indistinguishable states, and is
ratified graphicall y (when looking at the entire
admissible domain) for the optimization tolerance
prescribed (ε=0.01), see figure 10. In this case

31.78 10Xψ −= ⋅ , 1Sψ = , 31.45 10−Γ = ⋅  and the

index NOI  is 0NOI =

General conditions and other interval estimation
results for this type of methodology and model can
be found in (Valdés-González and Flaus, 2001).

Fig. 10. Indistinguishable states determined when the
beginning of the horizon is t=0 hrs and Bε=0.01.

6. CONCLUSIONS

Notions of ε-observabili ty by interval numbers
combined with the IMHSE method in nonlinear
systems have been presented. This approach is
assumes/takes the form of a subset that contains the
global solution for a determinate system by interval
numbers. An index combining a level δi obtained
(over a subset of neighborhood) for a given margin
of α on the output trajectory is also presented.
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