Copyright © 2002 IFAC

15th Triennial World Congress, Barcelona, Spain

TOWARDS AN INTEGRATED CONCEPTION OF
HYBRID DYNAMICAL SYSTEMS

Valérie Roy *! Nadia Ma'iz *

* Ecole des Mines de Paris, Centre de Mathématiques Appliquées
2004 rte des lucioles BP 93, 06902 Sophia-Antipolis cedex France
{valerie.roy, nadia.maizi} @sophia.inria.fr

Abstract: Hybrid dynamical systems are composed of continuous-time dynamical
parts, mixed with event-driven parts. Most of the time, both parts are designed
separately using specific techniques of each domain, and integrated a posteriori in
an application-specific manner. This approach is restrictive in that it does not exhibit
a hybrid global model of the designed system, that would though be required for
analysis and behavior-checking to take place. In this paper, we discuss and illustrate
our approach of hybrid systems modeling, that is based on the obvious statement
that both domains (dynamical and event-driven) must be clearly considered in an
integrated manner from the very beginning of the design.

In our example, we exhibit a draft formal framework for hybrid system modeling, that
would allow for verification techniques. For that purpose, we take advantage of the
recently developed techniques and tools, in both areas. The numerical computation
laboratory - matlab - that we chose for the dynamical system part design, fits perfectly
with our goals. But the reactive synchronous language chosen - Esterel - , if it actually
fits with the event-driven part specification, exhibits some weaknesses when dealing
with data and values, that are needed when interfacing both parts together.

Keywords: dynamical systems, control-dominated reactive synchronous languages,

hybrid systems

1. INTRODUCTION

Hybrid dynamical systems involve dynamics with
continuous or discrete time (physical phenomena)
and events. Both control theory and computer sci-
ence communities show a great interest for these
systems. On the one hand, industrial applications
deal, more and more often, with problems of in-
creasing complexity that should be solved by a
global, thus hybrid, approach. On the other hand
the drastic improvement of computer power opens
new perspectives for the implementation of spe-
cialized algorithms well adapted to fit with real-
sized problems. Improvements in hardware and
software technologies are at the base of the exten-

1 Partially supported by ANVAR

sion, evolution, democratization and increasing
functionalities of computer systems. Applications
in the hybrid dynamical systems field - most of
the time embedded - are critical and need bug-free
implementations. It becomes necessary to provide
with an environment, appropriate for formal mod-
eling of such systems. By involving verification
techniques, this environment will then allow for
safer design.

In this paper, we first describe dynamical systems
from a hybrid standpoint. We discuss the fact
that some classical families of dynamical systems
clearly exhibit a hybrid behavior, and that being
considered as natively hybrid, they could thus



benefit from any result obtained within the hybrid
system research field.

Then we discuss of event-driven systems from the
reactive concept standpoint. We briefly present
the language, the hypothesis done to obtain a
valid model - like atomicity - and the semantics
needed to compile a program into the formal
model of finite automaton or net-list.

After this overview of the two domains, we present
an experiment of hybrid system design. As a
trade-off, it takes advantage of a pure event-
driven formalism in order to take into account
behavior and interface of dynamical sub-systems,
while preserving the semantics of the reactive
language. Interactions between both phenomena
are thus considered at the very beginning of the
implementation in a closely integrated manner.

The last section describes an example which illus-
trates the interest of our approach. In this exam-
ple, hybrid system modeling is done using specific
tools and techniques coming from each domain
but integrated in a formal way that provides us
with a global hybrid model.

The conclusion outlines some restrictions coming
from the selected reactive language, and suggests
some improvements that can be envisioned.

2. TOWARDS A HYBRID UNDERSTANDING
OF DYNAMICAL SYSTEMS

Within classical control theory, during a sys-
tem design phase, the dynamical modeling step
aims at describing the physical phenomena com-
ing from mechanics, biology, electricity, ...From
this model, the control theory can be applied;
the analysis phase then uses a standard formal-
ism, among : finite-dimensional linear dynamical
systems, infinite-dimensional, non-linear, ... The
analysis and study phases of these systems (di-
mensioning, stability study of the system, control,
optimization ... ) are the different issues that con-
trol theory is about.

Among the specialized arrays of control theory,
some of them - such as e.g. variable-structure
systems and sliding modes(Utkin, 1977), theory of

singular perturbation, discrete events system(F. Bac-

celli and Quadrat, 1992), - naturally exhibit a
hybrid behavior. Thus any of these research fields
could immediately benefit from any wide-purpose
result that could be established in the hybrid
systems arena.

In the current hybrid context, both aspects (con-
tinuous and event-driven) are considered sepa-
rately and brought together in an ad hoc manner.
For a genuine study of these systems from a hybrid
standpoint, there is a need for an earlier and

more thorough consideration of the interactions
between both sides.

On the other hand, the research fields of con-
trol theory (quadratic linear control, H* control,
game theory, ...) are likely to be subject of fur-
ther improvements in the hybrid area.

For numerous years, the design of continuous
systems has been able to take advantage of
the methodological and modeling framework that
came out with the numerical computing labora-
tories, from both industry (matlab) and research
(scilab). These laboratories, widely used among
the industry, are becoming references of the do-
main, or even maybe standards. But if they hap-
pen to include tools for addressing the event-
driven parts, - e.g. the stateflow toolbox in matlab
- this is never done in an integrated fashion, nor
does it allow for a formal modeling of the hybrid
aspects. Anyway, the related implementations are
most of the time of a far lower level of quality, as
compared with their numerical counterparts.

2.1 How does a dynamical system get hybrid ?

Let us consider a continuous system described by
its evolution law

&(t) = f(2(t),u(t),?)

Let us also consider a set of events e;, generated
outside the system. The event-driven context may
interfere with the continuous system in one of the
ways formalized below :

(1) notify a change in trajectory, among a pre-
defined set :

{e1,t1}; change in trajectory at time ¢; at
occurrence of event e; = z(t) = fi(x(¢),t)

(2) notify a change in initial conditions, resulting
in re-computing the trajectory :

{ej,tj,z;};, x; change in initial conditions
at time ¢; at occurrence of event e; = &(t) =
fa(t),u(t), 1)

(3) notify a change in the control law, resulting
in re-computing the trajectory :
{ek,tr,ur}r, ur change in the control law,
at time tj at occurrence of event e = (t) =

f(SL'(t), Uk (t)a t)

This list might be non exhaustive because we
did not consider all the possible perturbations
affecting a dynamical system.

Our purpose is to formalize a hybrid dynamical
system as a global loop. We imagined a simple
implementation of these concepts, so as to ob-
tain a tool allowing for an analysis of these sys-
tems from the control theory standpoint (analy-
sis, dimensioning) and from the software engineer
standpoint.



3. OUR UNDERSTANDING OF
EVENT-DRIVEN SYSTEMS

An event-driven system keeps on :

e waiting for events originating from its envi-
ronment,

e then in turn producing events to the outside
world.

They are also known as reactive systems. The de-
sign of such systems was the subject of numerous
researches, done for years, and that came out with
various models, methods and tools such as grafcet,
Petri net, statemate, reactive language. We will
focus on the latter approach.

3.1 The reactive approach of event-driven systems

The following section accurately describes what
we mean by event-driven systems taken as control-
dominated synchronous reactive systems.

The outside environment provides the event-
driven system with an input event (a set of sig-
nals), then activates the reactive system, that in
turn reacts by emitting an output event. This
sequence - input, activation, output - is called a
reaction, and matches in this model an instant.
The reactions rhythm is driven by the environ-
ment and the sequence of these instants describes
the basic abstract clock of the system. Within
this model, time is polymorphic, i.e. any signal
is considered the same way, physical time has no
special privilege : signals can be METER, a SECOND
or a BUTTON_ON.

Event-driven systems are naturally composed of
concurrent sub-systems, communicating together
and with the outside, each of them implementing
a part of the specifications. Their design meth-
ods must thus allow concurrency and modularity.
Signals are the abstract communication media
between environment and system, system and en-
vironment and between sub-systems. Communica-
tion is non-blocking and is done by synchronous
broadcast (like radio). When a signal is emitted,
it is seen everywhere inside the program : any
concurrent sub-system has a consistent view of
signal status (present/absent).

From these requirements, some languages have
been designed. They contain various operators
allowing us to wait, emit and test signals, to
preempt sub-program, to put sub-program in se-
quence or in parallel, to loop, to help organize a
program as a hierarcical and/or modular entity.

Many hypothesis are done for these systems to
present a consistent behavior. A reactive system
must have enough time to end its current reaction
before the input of the following reaction happens.

This hypothesis guarantees that a reactive system
never loses an input. So these systems are by
definition real-time systems. Another hypothesis,
named atomicity, prevents an input signal to
happen in the middle of a reaction. The last
requirement for our reactive system is to present
a deterministic behavior.

An operational semantics has been given to the
Esterel reactive language(Berry, 1999). The be-
havior of each operator is formally described by a
rewriting rule.

Differences between two reactive languages are
stated by their semantics. For example, the
Esterel(Berry, 1997) synchronous language reacts
instantaneously to the absence of a signal, while
the SL(Boussinot, 1998) reactive language decides
only at the end of the instant that a signal is
absent and delays any reaction to this absence
to the next instant. In the Esterel language, this
semantics generates causality problems : during
the execution of one instant, it is possible to decide
the absence of some signal, to react to this absence
and to continue the execution by emitting the sig-
nal, thus breaking the initial absence assumption.

About parallelism and concurrency concepts, it is
still difficult to understand how to physically dis-
tribute a system made of concurrent sub-systems
while preserving the semantics and the hypothesis
of the reactive synchronous language (ensure the
determinism, predict the behavior, evaluate reac-
tion time, ...). Thus a reactive system, even if
it is expressed in a modular way for the sake of
expressiveness, is, given the current state of the
art, compiled into sequential code.

The semantics given to a reactive language allows
us to translate a program into the formal model of
finite automaton, either in an explicit way, or in an
implicit way using binary decision diagrams. This
automaton represents all the possible behaviors of
the compiled program, and can be explored with
model-checking techniques with the aim to ensure
safety and liveliness properties. Notice that for
hybrid systems, we are particularly interested in
verification involving values, that is why we chose
the SMV model-checker.

Most of these reactive programing concepts will be
preserved in an approach of hybrid systems design
(e.g. the operational semantics leading to com-
pilation into a finite automaton). Some of these
concepts, more specific to other domains (e.g.
reaction to absence mostly appropriate to hard-
ware design), are useless constraints and should
be taken away. Some concepts are totally missing,
like a true capability to deal with values.



4. TOWARDS A GLOBAL APPROACH TO
HYBRID SYSTEMS

Coarsely, the description of a hybrid system in-
volves a part that evolves continuously with time -
modeled by differential equations - and a part that
evolves in an event-driven manner - presenting the
behavior of a finite automaton -. The evolution of
a dynamical system is driven by event occurrence;
conversely, various values of the state describing
the dynamical system might cause event genera-
tion and consequently act on the global behavior
of the application.

4.1 Weakness of a simple co-ezistence of event-driven

and dynamical concepts

One of our previous applications(Roy and Maizi,
2000) was about embedding event-driven pro-
grams written in the reactive synchronous lan-
guage Esterel into the simulator of dynamical
continuous system Simulink. In this experiment,
led through a case-study application in the field
of renewable energy systems, the global hybrid
systems was expressed under the numerical com-
putational environment matlab.

The weakness of the languages provided by this
environment was their absence of semantics. Thus,
the global system was relying on a simple co-
existence of the various components : a super-
vising controller and the dynamical physical pro-
cess. This modeling technique did not allow the
analysis of the interactions between these separate
parts. Verification was only done on the supervis-
ing part, which led to a certain lack of safety. The
limitation of this approach was clearly the lack of
a general framework that could take into account
both parts in an integrated manner.

4.2 Surrounding a dynamical system behavior by
an event-driven conception

Like purely event-driven system, a hybrid system
can be seen as the interconnection of concurrent
modules (acting at the same time) communicat-
ing together and with the outside through events
(signals); each module implementing a part of the
global specification (because we want to deal with
real-size problems that can be complex, we must
be allowed to use modularity and to express sys-
tems in a hierarchical way). A module has either a
dynamical continuous, or an event-driven behav-
ior. Interconnection between modules is expressed
in a natural way in an event-driven manner. The
global system is listening to the evolution of the
dynamical system through its state variable. Our

modeling method offers concurrency and modu-
larity, with the aim to address expressiveness and
code reusability.

As soon as we deal with hierarchy, reusability and
modularity, we must also mention compositional-
ity. Say that we have built two hybrid systems,
that we have validated : they have been speci-
fied, implemented, tested, simulated and verified.
When designing a new hybrid system, we of course
want to re-use those systems as parts of the new
one, so that we can take advantage of the work
previously done.

The problem is to know whether or not the mere
fact of connecting both subsystems together is
likely to produce a valid system. Compositionality
makes sense for event-driven systems in general,
though Esterel language is not compositional. The
continuous dynamical systems are compliant with
the compositionality constraints, and thus may
be, e.g. sequentialized or parallelized. For a hy-
brid system, we can think of compositionality as
an enhancement of compositionality applied to
its dynamical aspects : the continuous behaviors
must be composed before the event-driven behav-
iors can be.

We will now detail our example as it is repre-
sentative of our approach. We are still at the
experimental stage, a formal modeling will come
later, after the improvements of all the concepts
we want to include in our design.

5. OUR EXPERIMENT

Aiming to deal with examples in a realistic man-
ner, our implementation takes advantage of results
and tools that appeared these last few years, in the
fields of control theory and even-driven systems.
For the modeling of dynamical systems to be ex-
pressive, complete and meaningful, we take mat-
lab. For the even-driven parts, we benefit of mod-
eling, compilation et simulation tools developed
in the domain of the reactive synchronous lan-
guage Esterel. Finally, we take the model-checker
SMV (McMillan, 1999) for its capabilities in the
field of verification involving values. Interconnec-
tion between both parts is taken into account
inside the reactive language. A program will be
compiled into a formal model.

Given a continuous dynamical system imple-
mented under the matlab environment, the infor-
mation actually relevant in the evolution of the
hybrid system is its state. So as to be able to
access this information in Esterel, we solve step-
by-step the equations describing the dynamical



system (from now on, let’s call it the step-by-
step simulation). For that we invoke the dedicated
solvers in matlab via Esterel functions. As argu-
ments, we provide matlab with the input of the
dynamical system, and in return we get the new
state : we retrieve its output for these values to be
available from the system and also to provide it
to the next simulation step. In order to describe
these typed input-output by matlab types, we use
Esterel abstract data types.

var current_state : MATRIX in
initialize_F();
every INTEGRATION_STEP do
actualize_F(previous_state,
current_time,
control,
perturbation) () ;
current_state =
integrate_F(previous_state,
current_time,
control,
perturbation) ;
emit SYSTEM_STATE(current_state);
end every
end var;

At most one dynamical system can be enabled at
a time in the global hybrid system. Simulating
two dynamical systems at the same time and in
a separate manner does not make sense : they
must be composed to be simulated together. The
Esterel language is not able to ensure this restric-
tion. In our example, it is done by programming
carefully : each step-by-step simulation is enclosed
in an every INTEGRATION_STEP statement and we
avoid combining step-by-step simulations with a
parallel operator.

For implementing this example, we compile Es-
terel programs into C-code. The integration func-
tions, written in matlab, are translated into calls
to external function written in m, themselves being
translated into C-code by the matlab tool mcc that
allows how to compile m-code into C-code.

Within this framework, the dynamical system is
observed through its trajectory; this trajectory is
then ”plugged” into an event-driven program i.e.
derived into a finite automaton behavior. As far
as execution is concerned, firing a transition may
have two major types of causes :

e the variable describing the dynamical system
status gets outside of a predefined range;
e an external event occurs.

Firing a transition implies the system to switch
from one dynamical system to another as de-
scribed in section 2.1. Our example is about the
management of energy flows performed through

the regulation process of photovoltaic panels,
diesel, user appliances and battery bank. The
state of the dynamical system is the state of
charge of the battery bank. Whenever the battery
bank charge crosses given thresholds, some parts
of the global energy system - like photovoltaic
panels or diesel or battery bank itself - are con-
nected and disconnected.

SMV is a formal verification tool. This model
checker is equipped with a modeling language
named synchronous verilog. This language is in
the same family as Esterel and thus can be pro-
duced from an Esterel program. In our example,
the compiled code obtained, which gives every
possible behaviors of the program, contains dy-
namical system step-by-step simulation appearing
as function calls. So we can write and verify some
properties involving tests on these function return
values.

6. CONCLUSION

For validating our pre-integrated design approach
of hybrid systems, we developed an example where
the continuous parts of the system are fully in-
tegrated into an event-driven world. Our imple-
mentation relies on dedicated techniques and tools
from these two domains. On the continuous side,
the matlab computing system is, by its very na-
ture, perfectly suited for developing the dynamical
parts. On the event-driven side, the synchronous
reactive language Esterel is used for formally mod-
eling the reactive behaviors.

Nevertheless, when used within the hybrid system
area, it exhibits several drawbacks. This language,
being much oriented towards hardware circuits
specification, is obviously not very well suited for
handling valuated signals. For instance, the data,
as well as the conditional tests where they appear,
are not taken into account in the control flow, nor
in the finite automata that serves as a basis for
verification. This drastically decreases our ability
to perform verification of the behaviors involving
values, while this is precisely what we are inter-
ested in. In much the same way, apart from the
primitive types, an elaborated data type can only
be an abstract data type whose description must
be done in an external host language. But within
the context of hybrid systems, there is an actual
need for dealing with arrays, matrices, records or
enumeration, and these constructions need to be
built-in.

Moving forward on a similar track, we would
like to have specific constructions in the language
for interfacing dynamical systems, such as the
declaration and invocation of typed dynamical



systems. These constructions are likely to pretty
much improve the readability of the interfacing
parts of the system.

Lastly, Esterel causality policy is much too heavy
for us.

Considering all these remarks, we would like,
from now on, to focus our future work on the
definition and implementation of a language more
specifically dedicated to deal with hybrid systems
modeling.

7. REFERENCES

Berry, G. (1997). The esterel primer. Technical
report. Ecole des Mines de Paris and INRIA.

Berry, G. (1999). The constructive semantics
of pure esterel. Technical report. Ecole des
Mines de Paris and INRIA.

Boussinot, F. (1998). The SL language. CNET.

F. Baccelli, G. Cohen, G.J. Olsder and J.-P.
Quadrat (1992). Synchronization and Linear-
ity: An Algebra for Discrete Event Systems.
Wiley.

McMillan, K. (1999). Tutorial on smv. Technical
report. Cadence Berkeley Labs.

Roy, V. and N. Maizi (2000). Application of an
hybrid esterel, lustre, simulink system : a
hybrid energy system. Automation of Mized
Processes: Hybrid Dynamic Systems: The 4th
International Conference.

Utkin, V. I. (1977). Variable structure systems
with sliding mode : A survey. L.E.E.E. Trans.
Automatic Control.



