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Abstract: This paper presents a modified form of model based predictive control that exploits the 
concept of non-trivial terminal state weighting in the cost function. While maintaining simplicity of 
implementation, the performance of this algorithm is not sacrificed and the computational burden 
compared with traditional approaches is greatly reduced. This paper describes the proposed algorithm 
in detail and through application to several systems, including a benchmark fluidised catalytic cracker 
unit, demonstrates its advantages over traditional model based predictive control algorithms. 
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1. INTRODUCTION 
 
Control of unconstrained linear systems is an 
established branch of automatic control engineering 
that has seen significant theoretical advances in 
recent years. Despite these advances the practical 
application of this theory to systems that are subject 
to constraints on both states and manipulated 
variables still presents a significant challenge. One of 
the most popular methods for dealing with the 
constrained regulation of linear systems is Model 
Predictive Control (MPC), a detailed survey of which 
can be found in Mayne et al. (1998). In this approach 
control moves that minimise a time-domain 
performance function, evaluated over a prediction 
horizon, subject to system dynamics and constraints 
on state and manipulated variables are applied to the 
process.  
 
Traditionally, the issue of solving the constrained 
infinite-horizon MPC (CIHMPC) control problem, 
which would automatically guarantee nominal 
stability and feasibility assuming the existence of 
constrained optimum, has not been successfully 
addressed due to the inherent fact that the resulting 
optimisation problem is infinite-dimensional and 
hence insoluble. The solution had, therefore, to be 
obtained through recasting the infinite-horizon into 
the finite-horizon and repetitive solution of the 
corresponding finite-dimensional optimisation 
problem at each time instant while only the first 
element of the optimal control sequence is 
implemented. In this approach the performance 
function has been defined over the restrictive subset 

of the time-domain, which is of comparable size to 
the most dominant transient characteristics of the 
system, such as rise time or settling time. 
 
Even though the constrained infinite-horizon MPC 
control problem has been solved recently, it may still 
require extensive computational burden in order to 
accommodate for conditions imposed on its 
implementation. Therefore, it becomes important to 
address the practical issues as well as theoretical ones 
when introducing the new control algorithm, such as 
CIHMPC. 
 
In this paper, the MPC controller that has been 
proposed by Scokaert and Rawlings (1998) as an 
intermediate step towards developing CIHMPC 
controller has been implemented on a number of 
systems, including the benchmark simulation of a 
fluid catalytic cracking unit taken from MacFarlane 
et al. (1993). The fundamental objective of this paper 
being to demonstrate the capability of this algorithm 
to satisfy performance requirements while keeping 
the computational burden low. The presented 
controller is compared with the nominal MPC 
controller and the CIHMPC from (Scokaert and 
Rawlings, 1998; Chmielewski and Manousiouthakis, 
1996) and shown to satisfy the expectations. 
 
The paper is organised as follows. In the second 
section, the general state- space system is introduced 
together with the mathematical description of the 
constraints. This is followed with a description of 
nominal MPC, standard CIHMPC and the modified 
form of MPC. Section 5 details application of the 
modified MPC to the control of a double integrator, 
non- minimum phase system and the simulation of 
the fluid catalytic cracking unit (FCCU) plant and 
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compared modified MPC with both nominal MPC 
and the CIHMPC in the more practical context. 
Finally, the paper provides several conclusions from 
the work. 
 
 

2. CONSTRAINED OPTIMAL CONTROL 
FORMULATIONS 

 
 
2.1 System Description 
 
Consider a discrete linear time- invariant system of 
the following form: 
 

kkk BuAxx +=+1    (2.1) 
 
where  is the state vector, u  is the 
control vector,  is the state transition 
matrix,  is the control (input) distribution 
matrix and  is a nonnegative integer 
denoting the time instant. 
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In most practical situations, states and/or the 
manipulated inputs are bounded in magnitude. These 
constraints on the states and inputs can be 
incorporated into the mathematical model of the 
system by the following relations: 
 

dDuk ≤    (2.2) +∈ Zk
hHxk ≤    (2.3) +∈ Zk

 
where  and D H  represent constraint distribution 
matrices while d  and  are the corresponding 
constraint levels for state and control vectors, 
respectively. 
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2.2 Constrained  Optimal Control 
 
Several constrained optimal control regulation 
problems are now presented. 
 
(P1): Constrained Finite- Horizon Optimal Control 
Problem  
Given an initial state , the task is to find the 
optimal control sequence: 

0x

=Nu { } { 110
1
0 ,...,, −

−
= = N

N
kk uuuu

0x

} , such that the 
constraints on states and/ or inputs (controls) are not 
violated while  is regulated to the origin of the 
state-space in optimal manner, defined by the 
following optimisation problem: 
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subject to: 

kkk BuAxx +=+1 ,  1,...,1,0 −= Nk
dDuk ≤ ,  1,...,1,0 −= Nk
hHxk ≤ ,  Nk ,...,1,0=

 
where  and Q R  are weighting matrices and  is 
the terminal weight, which, in this case, is 
pragmatically taken to be equal to the nominal state 
weight, i.e. . 

0P
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Note that no information concerning the system’s 
evolution for , is encrypted into the 
algorithm. Hence there is a requirement for the 
prediction horizon, , to be large enough to ensure 
stability, feasibility and satisfactory performance 
requirements. For the remainder of this paper, (P1) 
will be termed the nominal MPC scheme. 
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The on-line implementation of the general finite- 
horizon MPC algorithms is of receding- horizon 
character wherein at every sampling instant, the 
entire control sequence is calculated but only the first 
control move is implemented. In this way, the MPC 
controller attains the feedback structure, taking into 
account the plant-model mismatch and external 
disturbances. Note that significant computational 
constraints are imposed onto the overall control 
system as quadratic programming program needs to 
be resolved at each time instant. It is for this 
particular reason, that MPC is mainly applied to 
linear systems where relatively infrequent sampling 
allows for extensive computation. 
 
CIHMPC, has been proposed in (Scokaert and 
Rawlings, 1998; Chmielewski and Manousiouthakis, 
1996). The major motivation for its development is 
the guarantee of nominal stability that the algorithm 
offers. By using this approach, the solution is 
stabilizing, under the assumptions on the feasibility, 
stabilizability and detectability. It is also noted that if 
there is no feasible solution to the CIHMPC then 
there is no solution for the given control problem 
setting as stated in (Scokaert and Rawlings, 1998; 
Chmielewski and Manousiouthakis, 1996). 
 
(P2) CIHMPC Formulation: 
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subject to: 

kkk BuAxx +=+1   0≥k
hHxk ≤    0≥≥ kN
dDuk ≤     01 ≥≥− kN

LQKN Xx ∈    



 
where  is taken to be the solution 
of the Discrete Algebraic Riccati Equation (DARE). 

 is defined as the set which is invariant under 

the application of the unconstrained LQR control law 
for present and all future time, and contained within 
the state/ control constraints: 
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where  is the unconstrained LQR gain, obtained 
from solving the DARE. By incorporating the 
terminal weight to be equal to the solution of the 
DARE and imposing the terminal state inclusion 
condition, , it is ensured that from 

 up to k , unconstrained LQR regulates 
a system without violating the constraints. Hence, by 
using the principle of optimality, the finite- horizon 
MPC controller, which solves (P2), is found to be 
equivalent to CIHMPC.  
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The main limitation with the solutions to both (P1) 
and (P2) is the computational burden that is imposed 
through repetitive solving of the corresponding 
quadratic program. This computational burden is 
introduced, in the case of CIHMPC, with the large 
prediction horizon that may be required to guarantee 
that the terminal state belongs to .  

LQKX
 
Finally the modified MPC algorithm, proposed by 
Scokaert and Rawlings (1998), as an intermediate 
step from nominal MPC to the CIHMPC, is presented 
next: 
 
(P3): Modified Constrained Finite-Horizon Optimal 
Control Problem 
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subject to: 

kkk BuAxx +=+1   0≥k
hHxk ≤    0≥≥ kN
dDuk ≤     01 ≥≥− kN

   
and where  is taken to be the 
solution of the DARE. 

00 >== TSSP

Similarly to the CIHMPC, it is assumed through the 
relation  that from  up to , 
the unconstrained LQR control law regulates the 

plant. However, in this modified MPC algorithm 
there is no assurance that all the inequality 
constraints, imposed on the inputs and states, are 
inactive from  up to , since the 
terminal state inclusion condition is not imposed. As 
a consequence, modified MPC is not equivalent to 
the CIHMPC. However, by keeping the terminal 
weight equal to the solution of DARE, some 
information, concerning the future evolution of the 
system, is present during the subsequent 
optimisation. Furthermore, the assumption of inactive 
constraints at the end of the prediction horizon may 
not induce large deviation from the actual situation 
and hence performance of the modified MPC may 
not greatly vary from the CIHMPC controller, as 
demonstrated in the following section. 
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Note that the key difference between (P2) and (P3) 
lies in relaxation of  condition in the 

case of (P3). Consequently, complexity of the 
controller corresponding to (P3) is greatly reduced 
since the length of the prediction horizon does not 
need to comply with the terminal state inclusion 
condition. This is a very important aspect in any real- 
time control application due to the requirement for 
repetitive solving of the corresponding quadratic 
program. It is demonstrated later in this paper that the 
performance of the modified MPC controller is 
comparable to that obtained with the MPC algorithm 
proposed by (Scokaert and Rawlings, 1998; 
Chmielewski and Manousiouthakis, 1996) with much 
longer prediction horizons. In this way, the 
computational burden is reduced without sacrificing 
the performance of the resulting control system.  
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However, the absence of infinite- horizon guarantee 
disallows any theoretical properties, concerning 
CIHLQR, to be replicated in the case of (P3). On the 
other hand, it can be argued that issues such as 
nominal stability are usually satisfied and, in fact, 
through the simulation results in this paper it is 
argued that in many circumstances satisfactory 
performance results even if strict theoretical 
properties of a control algorithm are not fully 
established.    
 
In the following section, it will be shown that in 
many situations, absence of terminal state inclusion 
condition minimises the computational burden, by 
keeping the length of the corresponding prediction 
horizon small, while the performance remains similar 
if not identical to that of the CIHMPC. Additionally, 
it will be demonstrated that the modified MPC 
outperforms the nominal MPC with the same length 
of the prediction horizon and the same choice of 
weighting matrices. 
 
 

3. SIMULATION RESULTS 



 
 
3.1 Introduction 
 
In this section a number of simulation experiments, 
implemented in MATLAB, demonstrate the 
efficiency of the modified MPC controller when 
compared with CIHMPC, and also its superiority 
over the equivalent nominal MPC. Equivalence here 
is in terms of the length of the prediction horizon and 
weighting matrices.  
 
The control problems of state regulation as well as 
set- point tracking have been considered. Note, 
however, that the reference signal tracking can be 
also implemented in straightforward fashion. 
 
  
3.2 Double Integrator 
 
The first system to be implemented is the double 
integrator with the following discrete- time transfer 
function, assuming a sampling period of 1 second: 
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The control input is assumed to be bounded by 

 and the states are assumed to be 
unbounded. The weighting matrices, used in the cost 
function of the MPC controller are chosen to be equal 
to: 

5.05.0 ≤≤− u
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The initial states, used in this experiment, are 121 
points in the state- space sub- region, defined by: 
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The value of the prediction horizon,  required to 
solve the CIHMPC problem was determined for each 
of the initial states.  
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The modified MPC controller was also implemented 
with the length of the prediction horizon, denoted by 

, chosen to be one with such a property that the 
resulting control move converges to the control input 
of the standard CIHMPC formulation. This modified 
MPC formulation has been named the least- 
conservative CIHMPC. 

N̂

 
In Figure 1, a frequency histogram of the length of 
the prediction horizon for both the standard CIHMPC 
and the least- conservative CIHMPC is shown, taken 

over the 121 data points, i.e. initial states. In other 
words, the number of initial states for which a 
particular length of the prediction horizon is required 
to guarantee solution to (P2) and the number of initial 
states for which (P3) with a particular length of a 
prediction horizon would result in the same initial 
control move as the solution to (P2) are plotted as 
functions of the length of the prediction horizon.     
 
The mean and standard deviations of  is shown to 
be much smaller than the mean and standard 
deviation of : 
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In this experiment, it has been demonstrated that for a 
large number of states, the CIHMPC optimal and 
least- conservative, in the sense of computational 
burden, solution is given simply by the modified 
MPC with the length of the prediction horizon equal 
to 1 while the standard CIHMPC requires much 
larger lengths of prediction horizon to satisfy the 
terminal state inclusion condition. As expected, 
prediction horizon of  
 
CIHMPC was found to show a strong dependence on 
the initial state while this was not the case for the 
modified MPC controller, listed in Figure 1 as least- 
conservative CIHMPC.  
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3.3 Non- Minimum Phase System 
 
The second system that has been considered is the 
following non- minimum phase system: 
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Its discrete- time state- space matrices, assuming 
sampling interval of 1 second, are given as follows: 
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The control input is assumed to be bounded by 

 and the output is assumed to be 
bounded by . The weighting 
matrices, used in the cost function of the MPC 
controller are chosen to be equal to 

 and
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−

10,1,1,1(diagQ =

1212 ≤≤ y

) 1=R  with initial output 

set to .  10,40 == xy
 
In this case, all three controllers, discussed in the 
previous section, have been implemented. 
 
In order for stability and feasibility to be satisfied, 
prediction horizon length of the nominal MPC had to 
be kept above or equal to 10. On the other hand, 
modified MPC with prediction horizon greater or 
equal to 2 produced satisfactory, stable and feasible 
response. However, more importantly, the modified 
MPC with prediction horizon length of 2 has been 
found to be equivalent, in terms of control inputs 
computed by the quadratic program, to the CIHMPC 
for which the initial length of the prediction horizon, 
required to satisfy the terminal state inclusion 
constraint, has been found to be equal to 8. The 
results of this experiment are shown below in Figures 
2 and 3. 
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 Figure 3: Output Response 
 
3.4 FCCU Plant 
Fluidised catalytic cracking units are complex 
chemical plants within which several feeds consisting 
of high boiling point components from several 
refinery process units are cracked into lighter and 
more valuable components. After further processing, 
the product streams of the FCCU are blended with 
streams from other refinery units to produce a 
number of products, such as distillate and various 
grades of gasoline. 
 
The model that is used for emulation of real FCCU 
has been developed by MacFarlane et al. (1993).  
 
In this work, the control of a subsystem of the FCCU 
has been implemented with the following inputs: 

=1F  set- point for the flow of wash oil into the 
reactor riser (lb/s) 

=3F  the flowrate of fresh feed to reactor riser (lb/s) 

=TF  the total airflow (into regenerator) controller 
(lb/s) 
 
and the following outputs: 
 

=rT  Riser temperature ( ) Fo

=regT  Regenerator temperature ( ) Fo

=sgOC ,2
 Concentration of oxygen in the stack gas 

=11V  Wet gas compressor suction valve position 
 
An incremental 12th order linear state-space model 
was obtained for the system using standard system 
identification techniques. The states used in the 
model were chosen to be past output measurements. 
The set- points used were as follows: 
 

FT SET
r

o990=    FT SET
reg

o1270=

%7.1,2
=SET

sgOC    85.011 =SETV
 
An unmeasured disturbance, which is coke 
formatting factor, modelling the unknown 
composition of the fresh feed, was introduced to 
upset the overall system and test the controller. 
 



The weightings on the states, in matrix Q, are given 
as follows: 
Weighting on T ;  300=r

Weighting on T ;  100=reg

Weighting on C ;  400,2
=sgO

Weighting on V  90011 =
 
The control inputs have been weighted equally by 

. 33200 ×⋅= IR
Note that these weights were chosen through trial and 
error. The constraints on the manipulated variables in 
this system are as follows: 
 

170 1 ≤≤ F    1440 3 ≤≤ F
1000 ≤≤ TF   

 
1.01.0 1 ≤∆≤− F   2.02.0 3 ≤∆≤− F
5.05.0 ≤∆≤− TF  

 
Figures 4 and 5 compare the response of the 
regenerator temperature and the concentration of the 
oxygen in the stack gas with the system under 
modified MPC (MMPC) and nominal MPC  (NMPC) 
with varying prediction horizons. 
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Figure 4: Regenerator Temperature 
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Figure 5: Oxygen Concentration 
 

These results demonstrate how modified 
MPC with a prediction horizon of 1 is capable of 
regulating regenerator temperature and oxygen 
concentration with greater accuracy than nominal 
MPC with the same prediction horizon. It was found 
that increasing the prediction horizon for modified 
MPC produced very little improvement and as the 
prediction horizon was increased for nominal MPC, 
it began to approach the control performance of 
modified MPC with a prediction horizon of 1. This 
result confirms the expectation that modified MPC 
should produce good control performance with a 
small length of the prediction horizon, thus 
significantly reducing the computation burden while 
maintaining satisfactory performance. 
 
 

4. CONCLUSION 
 
In this paper, the issue of modifying the traditional 
finite-horizon MPC has been explored in order to 
improve performance of the resulting control system. 
These modifications are closely linked with 
constrained infinite-horizon MPC. Through 
applications to a simple double integrator, non- 
minimum phase system and to a benchmark 
simulation of a FCCU plant it is shown that the 
modified MPC algorithm produces satisfactory 
control performance with a significantly reduced 
prediction horizon, when compared to nominal MPC 
as well as standard CIHMPC controller, as proposed 
by (Scokaert and Rawlings, 1998; Chmielewski and 
Manousiouthakis, 1996). This reduction in the 
prediction horizon length means that the computation 
burden of the algorithm is reduced which is an 
important result since it shows that the application 
area for MPC may be extended to dynamic systems 
that require rapid sampling rates. 
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