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Abstract: Estimation of a single-input single-output block-oriented model is studied. The
model consists of a linear block embedded between two static nonlinear gains. Hence it is
called N-L-N Hammerstein-Wiener model. First the model structure is motivated and the
disturbance model is discussed. The paper then concentrates on parameter estimation. A
relaxation iteration scheme is proposed by making use of a model structure in which the error
is bilinear-in-parameters. This leads to a simple algorithm which minimizes the original loss
function. The convergence and consistency of the algorithm are studied. In order to reduce the
variance error, the obtained linear model is further reduced using frequency weighted model
reduction. Simulation study will be used to illustrate the method.
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1. INTRODUCTION

Commonly used block-oriented models are Hammer-
stein model, Wiener model and their combinations.
A Wiener model is a nonlinear model with a linear
dynamic block followed by a static nonlinear function
and a Hammerstein model has nonlinear block fol-
lowed by a linear dynamic block. Many researchers
have studied the parametric identication of Ham-
merstein model; see Narendra and Gallman (1966),
Hsia (1977), and Stoica and Söderström (1982). Some
work has been done on the identication of Wiener
models; see, e.g., Billings and Fakhouri (1982), Gre-
blicki (1992) and Verhaegen (1998). Wigren (1993)
proposed a recursive algorithm. In the literature, the
extension of the Hammerstein and Wiener models is
often in the form of an L-N-L model where a non-
linear block is embedded between two linear blocks
and it is called a Wiener-Hammerstein model; see
Billings (1980), Billings and Fakhouri (1982), and

Boland and Doyle (1982). Often correlation analy-
sis are used and they belong to nonparametric model
identication. A recursive estimation of a parametric
Wiener-Hammerstein model is proposed in Boutayeb
and Darouach (1995).

In this work, another combination of Hammerstein
andWiener models is proposed. The model consists of
a linear block embedded between two static nonlinear
gains. Hence it is called N-L-N Hammerstein-Wiener
model. Very little has been done in the study of this
model structure. Falkner (1988) has proposed an iter-
ative scheme to identify nonparametric N-L-N mod-
els. Chernyshov (2000) has proposed an output error
method for the identication of nonparametric N-L-
N models. To our best knowledge, the identication
of parametric N-L-N models has not been studied in
control literature. In Section 2 we will parametrize the
model. Section 3 will treat parameter estimation, con-
vergence and consistency analysis. Simulation studies
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are performed in Section 4. Section 5 contains the
conclusions.

2. MODEL PARAMETRIZATION

The proposed N-L-N Hammerstein-Wiener model is
shown in Figure 1.1. In a process control environment,
the N-L-N model can be motivated by considering the
input nonlinear block f1(u) as actuator nonlinearity
and the output nonlinear block f2(w) as process non-
linearity. Mathematically, because the N-L-N model
includes both Hammerstein model and Wiener model
as its special cases, it will approximate nonlinear sys-
tems better than either of the two models.

f1(u) G(q) f2(w)
u(t) w1(t) wo(t) w(t)

v(t)

y(t)

Figure 1.1 N-L-N Hammerstein-Wiener model

The disturbance term v(t) is placed before the out-
put nonlinear block, which is different from the nor-
mal assumption that a stationary disturbance acts at
the process output. This disturbance model implies
nonlinear output disturbance: the output disturbance
is large when the process gain is large (process is
sensitive) and is small when the gain is small (pro-
cess is insensitive). This assumption is more realistic
from a process operation point of view. However, the
measurement noise can not be modelled properly in
this way. In practice, the inuence of (unmeasured)
process disturbance is, in general, much greater than
that of the measurement noise due to the advances in
sensor technologies. The identication test is done in
closed-loop and the closed-loop system is assumed to
be stable; see Figure 4.2. During the test, a test signal
is applied at the setpoint or at the input. It should be
clear that an open loop test is a special case of the
closed-loop test.

ProcessController
Setpoint

u(t)

v(t)

y(t)

-

Figure 1.2 Closed-loop system

The equations that describe the N-L-N model in Fig-
ure 1.1 are

w1(t) = f1(u(t))

w(t) =G(q)w1(t) + v(t)

y(t) = f2(w(t)) = f2[G(q)f1(u(t)) + v(t)] (1)

It is assumed that: 1) the nonlinear functions f1(u) and
f2(w) are continuous; 2) the output nonlinear function
f2(w) is monotone and invertible; 3) the output of
the linear part is disturbed by a stationary stochastic
process fv(t)g with zero mean.
The nonlinear functions will be parametrized (approx-
imated) using cubic splines (Lancaster and Šalkauskas,
1986) and the linear block with the disturbance will
be parametrized using a Box-Jenkins model. Denote a
set of knots fu1; u2; :::; um1

g for u(t) which are real
numbers and satisfy

u1 = umin < u2 < ::: < um1
= umax

A cubic spline function for f1(u) is given as

w1(u) = f1(u)

=
m1¡1X
k=2

¯kju¡ ukj3 + ¯m1
+ ¯m1+1u (2)

where [¯2; ¯3; :::; ¯m1+1] are real numbers, namely,
the parameters to be estimated. Here m1 is called the
number of knots which can be seen as the ”degree”
or ”order” of the cubic splines. Note that the number
of parameters of the cubic splines is also m1. It is
easy to verify that the rst and the second deriva-
tives of the function are continuous and hence the
function is smooth. Similarly, denote a set of knots
fw1; w2; :::; wm1g forw(t), a cubic spline function for
f2(w) is given as

y(w) = f2(w) =
m¡1X
k=2

®kjw ¡wkj3 + ®m + ®m+1w

(3)

Note that the cubic splines are used to approximate
the nonlinearities. The true nonlinear functions need
not to be cubic splines.

A Box-Jenkins model for the linear part is

w(t) = G(q)w1(t) +H(q)e(t) (4)

with

G(q) =
b1q

¡1 + :::+ bnq¡l

1 + a1q¡1 + :::+ anq¡l
=
B(q)

A(q)

H(q) =
1 + c1q¡1 + :::+ cnq¡l

1 + d1q¡1 + :::+ dnq¡l
=
C(q)

D(q)

where q¡1 is the unit delay operator, l is the order of
the model and e (t) is white noise with zero mean and
variance R.

The intermediate signals w1(t) and w(t) can not
be measured, hence two arbitrary gains may be dis-
tributed between the linear block and the two non-
linear blocks. This means that the parameters of the
model cannot be uniquely determined without intro-
ducing further constraints. A solution to this problem
is to x some coefcients of the nonlinear blocks. For
example, one can let ®m+1 = 2 and ¯m+1 = 1.



3. PARAMETER ESTIMATION

Assume that an identication test has been performed,
possibly in a closed-loop operation. Denote the input-
output data as

ZN = [u(1); y(1); u(2); y(2); ::: ; u(N); y(N)]
(5)

For given orders l; m and m1, determine the param-
eters of the model (1)–(4) using the input-output data
from the test by minimizing the loss function

V =
1

N

NX
t=1

"2(t) (6)

where

"(t) =H¡1(q)[f¡12 (y(t))¡G(q)f1(u(t))]
=
D(q)

C(q)
[f¡12 (y(t))¡ B(q)

A(q)
f1(u(t))] (7)

The error dened in (7) is highly nonlinear in model
parameters. Direct minimization of the loss function
(6) is difcult and may run into numerical problems.
It desirable to reduce this complexity by looking for
some simpler numerical schemes. It is well know that
any linear prediction error model structure can be
approximated arbitrarily well by an ARX, or, equation
error model with sufciently high order; see, e.g.,
Ljung (1987). Based on this fact, approximate the
linear part with Box-Jenkins structure in (4) by a high
order ARX model

w(t) =
Bn(q)

An(q)
w1(t) +

1

An(q)
e(t)

=
Bn(q)

An(q)
f1(u(t)) +

1

An(q)
e(t) (8)

where n is the order of the ARX model (n > l) and
fe(t)g is white noise with zero mean and variance R.
Substitute w(t) in (1) using the ARX model, take
the inverse of the nonlinear function f2(w) on both
sides and then multiply them byAn(q): The following
equation yields

An(q)f¡12 (y(t)) = Bn(q)f1(u(t)) + e(t) (9)

whereAn(q) andBn(q) are polynomials of q¡1. Now,
parametrize the inverse f¡12 (y) by a cubic spline

f¡12 (y) =
m2¡1X
k=2

°kjy ¡ ykj3 + °m2
+ °m2+1y (10)

where m2 is the number of knots. For unique repre-
sentation, we assume that

°m2+1 = 1; ¯m1+1 = 1 (11)

Then, the loss function for parameter estimation for
model (8) becomes

V NARX(µ; Z
N) =

1

N

NX
t=1

"2(t; µ) (12)

where

"(t; µ) = An(q)f¡12 (y(t))¡Bn(q)f1(u(t)) (13)

Denote the parameter vector of model (9).as

µ = [a1; ::; an; b0; ::; bn; °2; ::; °m2+1; ¯2; ::; ¯m1+1]
T

(14)

This vector varies over a set DM which is a compact
subset of Rnµ where nµ is the number of parameters.

Writing out the nonlinear functions in equation (13)
yields

"(t; µ) = An(q)

"
m2¡1X
k=2

°kjy(t)¡ ykj3 + °m2
+ y(t)

#

¡Bn(q)
"
m1¡1X
k=2

¯kju(t)¡ ukj3 + ¯m1
+ u(t)

#
(15)

Note that the error "(t; µ) is bilinear in the parameters
of Bn(q), An(q), f1(u) and f¡12 (y). Hence one can
use the following relaxation algorithm for parameter
estimation.

3.1 Estimate f1(u), f¡12 (y) and [An(q), Bn(q)]

Initialization.

Set f1(u) = u and f¡12 (y) = y and estimate An(q)
and Bn(q) using linear least-squares.

Iteration.Denote Ân(i)(q), B̂
n
(i)(q), f̂1(i)(u) and f̂

¡1
2(i)(y)

as the estimates from iteration i, then

1) Calculate the parameters of f̂1(i+1)[(u(t)] for xed
f̂¡12(i)[(y(t)] , Â

n
(i)(q) and B̂

n
(i)(q) by minimizing

NX
t=1

fÂn(i)(q)f̂¡12(i)[y(t)]¡ B̂n(i)(q)f1(i+1)[u(t)]g2

(16)

2) Calculate the parameters of f̂¡12(i+1)[(y(t)] for xed
f̂1(i+1)[(u(t)], Ân(i)(q) and B̂

n
(i)(q) by minimizing

NX
t=1

fÂn(i)(q)f¡12(i+1)[y(t)]¡ B̂n(i)(q)f̂1(i+1)[u(t)]g2

(17)

3) Calculate Ân(i+1)(q) and B̂
n
(i+1)(q) for xed f̂1(i+1)(u)

and f̂¡12(i+1)(y) by minimizing

NX
t=1

fAn(i+1)(q)f̂¡12(i+1)[y(t)]¡Bn(i+1)(q)f̂1(i+1)[u(t)]g2

(18)

Go back to 1). Stop when convergence occurs.

All the three steps are linear least-squares problems
which are numerically simple and reliable.



Now, we will show that this relaxation scheme is a
theoretically sound optimization method. To this end,
we need to dene persistent excitation condition on
the test input. Denote

¹u(t) = [ju(t)¡ u2j3; ju(t)¡ u3j3; ¢ ¢ ¢ ju(t)¡ um1¡1j3; u(t)]

We say that the input signal u(t) is strongly per-
sistently exciting with orders (n;m1) over the knots
fu1; u2; :::; um1g, if matrix

©u =

26664
¹u(1) ¹u(2) ¢ ¢ ¢ ¹u(n)
¹u(2) ¹u(3) ¢ ¢ ¢ ¹u(2n+ 1)
...

...
...

¹u(N ¡ n) ¹u(N)

37775 (19)

is nonsingular for all N >> max(n; m1). This def-
inition is similar to the strongly persistent excitation
condition for polynomial nonlinearity introduced in
Stoica and Söderström (1982).

Theorem 1. Assume that the input is strongly per-
sistently exciting with orders greater than (2n; m1)
over the knots fu1; u2; :::; um1

g and the input is not
determined purely by linear output feedback (see a5
bellow for the denition). Then the relaxation algo-
rithm (16)–(18) minimizes the criterion in (12) locally
if it converges.

Proof. See the proof of Theorem 2.1 of Golub and
Pereyra (1973)

Golub and Pereyra (1973) recommended to use the
separable least-squares if possible.

In the following we will established the convergence
of criterion V NARX(µ; ZN) and consistency of parame-
ter estimate µ̂. First, some assumptions on the process,
the model and on the test conditions are given.

a1 The data set ZN is generated by the process

Aon(q)fo¡12 (y(t)) = Bon(q)fo1 (u(t)) + eo(t)
(20)

The noise feo(t)g is zero mean white noise with
bounded moments of order 4 + ± for some ± > 0.
There is at least one delay in the process, or in
the controller. The polynomial Aon(q) is monic (its
rst coefcient is unity.). The nonlinear functions
fo¡12 (y(t)) and fo1 (u(t)) are continuous.

a2 The input-output data are bounded.

These assumptions are needed to prove the conver-
gence of the method. The following two assumptions
are necessary to prove the consistency.

a3 The true process (20) has the same parametriza-
tion as the model (9), (2), (10) and (11) with the
same orders. Polynomials Aon(q) and Bon(q) are
coprime.

a4 The input u(t) is strongly persistently exciting
with orders (2n; m1). If the input-output data is
generated in closed-loop, the input is not deter-
mined purely by linear output feedback.

Theorem 2. Assume that conditions a1 and a2 are
true, then the following convergence results hold:

sup
µ2DM

jVARX(µ; ZN)¡E"2(t; µ)j ! 0 w.p.1 as N !1
(21)

µ̂
N ! µ¤ w. p. 1 as N !1 (22)

where

µ̂
N
= arg min

µ2DM

V NARX(µ; Z
N)

µ¤= arg min
µ2DM

E"2(t; µ)

Moreover, assume that conditions a3 and a4 also hold
and denote the true parameter vector as µo:Then the
estimate µ̂

N
is consistent, namely,

µ̂
N ! µo with probability 1 as N !1 (23)

The proof can be found in Zhu (2002). The con-
vergence result holds under very general and weak
conditions. The true nonlinear functions need not be
cubic splines and the model orders need not to be
correct. The limiting model will always minimize the
loss function of the prediction error of w(t). Unstable
process can be treated without problems, because the
predictor is stable when an ARX model is used.

The determination of the nonlinear function f2(w)
from the estimate of its inverse f̂¡12 (y) is an approxi-
mation problem. This can be done using a linear least-
squares estimate.

3.2 Model Reduction for Linear ARX Model

The obtained N-L-N model with ARX model is un-
biased, provided that the process can be modelled by
an N-L-N model, but the variance error of the ARX
model is high due to its high order. Model reduction
can be used to reduce the variance error.

Assume that the input to the linear block w1(t) and
the input to the output nonlinearity w(t) are known
exactly, then it can be shown (see Ljung, 1985) that
the estimated frequency response of the high order
model is unbiased and its error follows a Gaussian
distribution with variance given as

var[Ĝn(ei!)] ¼ n

N

©v(!)R

©w1(!)R¡ j©w1e(!)j2
(24)

where Ĝn(ei!) is the frequency response of the esti-
mated high order ARX model, n is the order of the
ARX model, N is the number of data points, ©v(!)
is the power spectrum of the disturbance, R is the
variance of white noise fe(t)g that generated the dis-
turbance,©w1(!) is the power spectrum of input to the
linear block w1(t) and ©w1e(!) is the cross-spectrum
between the white noise fe(t)g and w1(t). Based on



(24), it can be shown that the asymptotic negative log-
likelihood function for the linear model is given by
(Wahlberg, 1989):Z ¼

¡¼

¯̄̄
Ĝn(ei!)¡Gl(ei!)

¯̄̄2 ©w1(!)¸2 ¡ j©w1e(!)j2
©v(!)¸

2 d!

(25)

where Gl(ei!) is the frequency response of the re-
duced model to be calculated.

4. SIMULATION STUDIES

The process is given as

y(t) = f2

·
0:5q¡1 + 0:25q¡2

1¡ 1:5q¡1 + 0:7q¡2 ¢ f1[u(t)] + v(t)
¸

with

f1[u(t)] =
u(t)p

0:1 + 0:9u2(t)

f2(w(t)) = w(t) + 0:2w
3(t)

and

v(t) =
®

1¡ 0:9q¡1 e(t)

The range of u(t) is [¡0:7; 2:5]. This process has
severe nonlinearities which are not cubic splines.

Simulation 1. First noise free simulation is used to
check the correctness and the convergence of the al-
gorithm. Open loop test is used and 1500 samples
are simulated. GMN signal with average switch time
Tsw = 10 is applied at the input. The range of u(t)
is [¡0:7; 2:5]. The true model order of the linear part
is used; the degrees of the two nonlinear functions are
both 12. The algorithm converges in about 15 itera-
tions. The identied model is almost perfect. The t
error is 0.07% in variance at w(t) and 0.04% at y(t).
Because the plots of the process and of the model
coincide with each other, they are not shown. Linear
Box-Jenkins and output-error models are also identi-
ed using the same input-output data. The t error of
a linear Box-Jenkins model is 26.8% at y(t) and that
of a linear output error model is 25.5%.

Simulation 2. The same as in Simulation 1, but distur-
bance v(t) is added at w(t). Disturbance level is 3%
(in variance) at w(t) and is about 10% at y(t). The
true and identied nonlinear functions are plotted in
Figure 4.1 and the true step response of linear part and
its estimation are shown in Figure 4.2. One can see
that the identied model is very good considering the
disturbance level. The algorithm converges in about
15 iterations.
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Figure 4.1 True and identied nonlinear functions.
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Figure 4.2 True and estimated step responses of the
linear block. Model gain is corrected.

5. CONCLUSIONS

The identication of a SISO N-L-N Hammerstein-
Wiener model is studied. The disturbance is intro-
duced that is nonlinear at the output. In parameter esti-
mation, the bilinear-in-parameters property of the high
order model is used to derive the relaxation algorithm
which is numerically simpler and more reliable than
general nonlinear search algorithms. The convergence
and consistency are proved. The effectiveness of the
proposed method have been shown in the simulation
examples. It is easy to extend the algorithm to multi-
input single-output (MISO) processes, provided that
there is no joint nonlinearity among the inputs.
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