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Abstract: Recently, local modeling has attracted much attention to identify the complex
systems. Inlocal modeling, global system model is obtained by combining a number of local
models, each of which has simpler structure and has arange of validity lessthan thefull range
of operation. Since the local models are identified for corresponding local operating regimes,
the performance of the global model is highly affected by the choice of the local operating
regimes. This paper addresses automatic selection algorithms of suitable local regimes in
local modeling. Based on three criteria, Kullback Discrimination Information (KDI), Akaike
Information Criterion (AIC), and Mean Square Error (M SE), we devel op regime integration
and partition algorithms. Numerical simulation studies illustrate the applicability of the
proposed selection algorithms.
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1. INTRODUCTION

Recent technological development makes engineer-
ing systems much more complex, and practical ap-
proaches to deal with such systems easily are re-
guested. Since these complex systems are usually
composed by a huge number of components, which
are strongly related with each other and have wide
range of operation, it is difficult to construct a
global model applicable to the full range of oper-
ation. Hence, an idea of loca modeling (Johansen
and Foss, 1995),(Johansen and Foss, 1997), (Murray-
Smith and Johansen (Eds.), 1997) has been received
much attention in modeling of such complex systems.

1 Partially supported by the Grant-in-Aid for Scientific Research
from the Japan Society for the Promotion of Science (10650432,
10045043).

2 Now with Developing Center for Mobile Computing and Com-
munications, Toshiba Corp. Hino 191-8555, Japan

Itisamodeling framework that isbased on combining
a number of local models, each of which has simpler
structure and has a range of validity less than the full
range of operation. The range in which each local
model is valid is called the operating regime. We se-
lect a number of operating regimes, which completely
cover the full range of operating range of the system
based on suitably chosen variables to characterize the
operating conditions of the system. Then, for each
local operating, we find an adequate local model and
find a local model validity function, which indicates
the validity of thelocal model for each local operating
regime at the specified operating condition. A global
model is constructed by combining local models with
an interpolation technique based on the local model
validity function.

Since the local models and local model validity func-
tions are closely related to the selection of local op-
erating regimes, quality of the global model is highly



dependent on the selection of local operating regimes.
This paper is concerned with regime selection in lo-
cal modeling, and propose automatic regime selection
algorithms, based on the observed input and output
data with three criteria, Kullback Discrimination In-
formation (KDI), Akaike Information Criterion (AIC)
and Mean Squared Error (MSE), for integration and
partition of regimes to build up suitablelocal regimes.
Though similar partitioning idea, LOLIMOT (local
linear model tree), was proposed independently by
Nelles (Nelles, 1997),(Nelles, 2001), it isbasicaly an
incremental algorithm and may provide unnecessary
complex models. The proposed partitioning agorithm
in this paper prevents unnecessary increase of local
regimes by introducing the parsimony principle.
Remainder of this paper is organized as follows. After
introduction of local modeling approach in section 2,
we describe the local regime selection procedure is
proposed with brief review of three criteria of KDI,
AIC and MSE in section 3. Section 4 presents results
of some numerical examples. Finaly, a conclusion is
presented in Section 5.

2. LOCAL MODELING

Rea systems usualy have complex and nonlinear
structures. For such systems, any models have a lim-
ited range of operating conditions and hence do not
provide sufficient accuracy or performance over the
full range of operations R. Hence, we develop anum-
ber of local models, each of which has simpler struc-
ture but serves well in aregion less than the full range
of operating region, and then construct a global model
by combining the local models with an interpolation
technique. In order to develop local models, we, first,
decompose the system'’s full range of operation into
a number of operating regimes where a smple local
model can be applied. Inthisapproach, suitable choice
of operating regimes is a key issue for building up a
good globa model.

Consider nonlinear dynamical systems expressed by
the following nonlinear autoregressive models with
exogenous input (NARX model):

y(t) = fly(t — 1), -, y(t —ny),
ult — 1), ut —ny)) +e(t)
=f(p(t—1)) +e(t) (N
St —1) = (y(t = 1), y(t —ny),

uw(t —1),---,u(t —ny))"

Here y(t) is the output, «(t) is the input and e(¢) is
noise, and ¢ (¢t — 1) is called the information vector.
We assume the orders n,,, n,, are known.

We decompose the total operating regime R into a set
of disioint operating regimes { R ; } such that

R=U'"R;

RiNR; =0 (empty) i#j @)

For each operating regime R ;, alocal model
y(t) = fi(d(t — 1)) +e(t)

i=1,...,n.(3)

is available, and the different loca modd is suf-
ficiently valid under different operating conditions.
Thus, there may be severa local models M; which are
valid under some operating conditions, while no loca
models are valid under other conditions. The relative
validity functions p;(¢) € [0, 1] indicate the validity
of each local model at the operating condition ¢. The
local model M; is accurate for the operating condition
¢ when p;(¢) is close to one, while local model M
isin accurate if p;(¢) is close to zero. And then, we
combine these local models with the relative validity
functionsto fit for the full range of operating region as
follows (Fig.1):

y(t) = f($(t = 1)) +e(t)

Ny

= hi@wi() *

wi(¢p) = 2

Z p;(d)

where ¢ and d indicate the current operating condition
and the distance between the current operating condi-
tion ¢ and the operating condition ¢ ; that fits most for
specified local model M, respectively, i.e.,

d=¢—cil
ci = arg e i(4) ®

1=1,...,n,

Fig. 1. Weighted combination of local models

For some cases, Gaussian functions are employed as
the validity functions.



pi(¢) = exp(—d*(¢, ¢i, 04)/2)
db.ci,0) = /(¢ —e)To (@ —c) ()

Since the global model (4) are weighted combination
of local models that are, of course, depend on the
choice of local regimes R;, the regime selection will
highly affect on the modeling performance. Thus,
suitable choice of local regimes should be considered.

3. LOCAL REGIME SELECTION PROCEDURE

We proposed here automatic regime selection algo-
rithmsfor suitablelocal modeling. The algorithms are
based on three criteria, Kullback Discrimination In-
formation (KDI), Akaike Information Criterion (AIC)
and Mean Squared Error (MSE), for integration and
partition of regimes to build up suitablelocal regimes.

3.1 Kullback Discrimination Information (KDI)

Kullback Discrimination Information (KDI) is well-
known information criterionfor model discrimination.
Itisameasure for discriminating in favor of the model
M, over the model Mo, and is defined by

t),, t—1
L1:2;y'] = /pl(ytlut‘l) log ;Mdytﬂ)

2 (y'|ut=1)

where p;(y*|ut~1) is the probability density function
of 4 = (y(t)y(t — 1),...,y(1)" given u'~! =
(u(t—1),u(t—2),...u(1)” under themodel M, (j =
1,2), respectively. Since KDI is non-negative and
equals to zero if and only the models are identical,
it can be employed as the index of distance between
models M, and M.

Consider thefollowing two stable autoregressive mod-
elswith exogenous input (ARX) models.

My Ar(q)y(t) = Bi(qhu(t) + e (2)
My : As(q)y(t) = Ba(q)u(t) + P (t)  (8)
where A,(q), B;(q) are
Ailg)=1+ zj: agj)q_t,

Bi(q) =Y 0q,

t=1

(=12 (9

e(t)¥) is independently normally distributed with
mean zero and variance o, and ¢~ isdelay operator.
Assuming that the noise distribution p(e(t)) is normal
as above, we can easily compute the conditional prob-
ability distribution p(y(¢)|u(t—1)) and obtain KDI for
these models as follows (Hatanaka and Uosaki, 1999).

L[1:2; y'] = —% (t + log%
—(pr M(Q)t)(Z(Q))_l(u(l)t — @)
—trace((2(2>)_12(1>)> (10)
where
o
K= Byl = [ w@m e ayte)
%

50 = Bj[(y" — p9 (" = pDH)T]

with conditional probability density function p ; (y(t)
lut=1) of y(t) given u'=t = (u(t — 1), ..., u(1))
(j = 1,2). We consider two local regimes, R; and
Riy1 (i,i+1€[l,---,n,]) whichare adjacent each
other, and examine whether it is better to integrate
these two local regimes R;, R;+1 into single regime
Rii+1 = RiUR;41, or not. We calculate the KDI for
discriminating in favor the local models M; & M,
for the local regimes prior to integration, where

qu & M+1 .
{ Ai(@)y(t) = Bi(g)u(t) +e(t), @eR; 1)
Air1(Qy(t) = Biv1(@u(t) +e(t), ¢ € Rita

over themodel M; ;4 fortheregime R; ;41 = R; U
R;+1 after regime integration, where

M;iv1: Aiira(@y(t) = Biiv1(qu(t) + e(t)
¢ € Riiv1 (12)
If the KDI is small, the distance between models
M; & M,y and M, ;41 is smdl. It indicates the
possibility to integrate the adjacent regimes R ; and
Riy1intosingleregime R; ;y1.

g Ri g R+l§ g R,i+1

Models prior inm Aaﬂer integraion
Mi vMi+l

. M ii+1
Comparison of KDI

Fig. 2. Models before and after integration

3.2 Akaike Information Criterion (AIC)

When we increase the number of local regimes and
build up a global model using larger number of local
models, thefitting error becomes smaller. But, in some
cases, the phenomenon of ‘over-fit” is occurs; addi-
tional (unnecessary) increase of loca regimes adjust



themselves to particular features of the particular real-
ization of noise realization, and the models obtained
do not work for different possible operating condi-
tions. Hence idea of ‘parsimony principle’ is intro-
duced. It says that among the models which explain
the data well, the model with the smallest number of
independent parameters should be chosen. This indi-
cates that the number of local models, or the number
of local regimes should not be increased so much. One
of the ideas to redlize this parsimony principle is in-
troduction of a penalty for model complexity. Akaike
Information Criterion isan example. It is defined by

AIC = —21log(maximum likelihood)
+2(number of parameters) (13)

For ARX models, AlC isgiven by

AIC = NlogV + 2(n+m) (14)
where N is number of data, n and m are number of
parameters @ = [a;, b;] in ARX models, respectively,

and V isthe Mean Square Error (MSE) of the identi-
fied ARX models,

1 .
V() =+ > €t 0)
e(t,0) = y(t) — §(t,0) (15)

where 8 is the estimate of the ARX parameters 6 =
(a1, an,, b1, -, by,)" and g(t, ) is the predic-
tion of y(t) based on the estimates . Hence, the best
choice of ordersis

(A,m) = argmin AIC (16)

n,m

In local modeling, the best choice of number of loca
regimes is given by the number of local regimes min-
imizing the value of AIC, since the number of param-
etersis proportional to the number of local regimes.

3.3 Regime Selection

We apply both regime integration and regime partition
process to find good local regimes. The criteria MSE
and AIC are used for regime integration and regime
partition processes, and AIC is used for stopping the
whole selection process (integration and partition).

(i) Regimeintegration process When the KDI for
discrimineting in favor the local models M; &
M+, for the local regimes prior to integration in
R; & Rit+1 over the model M, ;14 for the regime
Rq’,,i_‘,—l = R; U R7;+1 after regime integration is
small, it is likely that the distance between models
M; & M;+q and M; ;14 is small and integration
of the adjacent regimes R; and R;4; into single

regime R; ;41 IS possible. Hence, the regimes R ;
and R 41, which give the minimum of KDI among
the KDI'sfor al the combination of adjacent local
regime R; and R,y; and their integration R ; ;+1,
will be integrated into single regime R ; ;1. Then
local model should be re-constructed for the regime
Rjj+1-

(il) Regime partition process For eachloca modd,
the observations and their estimates based on the
local model are compared. If the discrepancy mea-
sured by MSE is large, the fitness is insufficient.
It may come from that the regime is too large
to fit the local model. Hence we will divide the
local regime with the worst fitness, which gives
the largest MSE, into two equi-partitioned local
regimes and the local models for the partitioned
regimes are re-constructed.

Two a gorithms are considered, which conductsregime
integration process only and regime partition process
only, respectively.

(8 Regime Integration Algorithm (Regime integra-
tion process only)

Step 1: Identification of local modelsfor m x n-
divided local regimes.

Step 2: Calculation of AIC.

Step 3: Execution of regime integration process
as above.

Step 4: Re-calculation of AIC after regime inte-
gration process.

Step 5: Comparison of AIC's of Step 2 and
Step 4. If AIC of Step 2 is smaller, stop the
regime selection with the model prior to inte-
gration process. Otherwise, renew the model
with after integration process, and go back to
Step 2.

(b) Regime Partition Algorithm (Regime partition
process only)

Step 1: ldentification of a loca model for the
whole operating regime.

Step 2: Calculation of AIC.

Step 3: Execution of regime partition process as
above.

Step 4: Re-calculation of AIC after regime par-
tition process.

Step 5: Comparison of AIC's of Step 2 and
Step 4. If AIC of Step 2 is smaller, stop the
regime selection with the model after partition
process. Otherwise, renew the model with af-
ter partition process, and go back to Step 2.

4. NUMERICAL SIMULATION STUDIES

Numerical simulation studies have been carried out
to examine the applicability of the proposed regime
selection algorithms.

Consider the following nonlinear time series model.



0.5z(t) + 1.0u(t) + 0.6u(t — 1)

u(t) > 0.5
z(t+1) = —0.5z(t) + 1.8u(t) + 0.3u(t — 1)
u(t) < 0.5
z(0) =0

y(t) = a(t) +e(t)
u(t) : random number distributed uniformly in
[0,1]

where observation noises e(t) are white Gaussian with
mean 0 and variance 0.1. Number of observationsis
N = 200, and they are divided into two parts; thefirst
half is used for the regime selection and the latter half
for validation. The operating points ¢(t) are assumed
to be a 2-dimensional variable (u(t), u(t — 1)). Inthe
Regime Integration Algorithm, the whole operating
regime are first partitioned with n, = 16 (4 x
4) rectangular regimes by ¢(t). While, in the Regime
Partition Algorithm, the regime is equi-partitioned
into two regime with smaller MSE (Fig.3).

(a) Integration (b) Partition
uent
u(t-1) S i
13, 14, 15, 16 |
' 1
1
1
1
1
_ i
u)
Regime partition
G} with smaller MSE

u(t-1)

u(t-1)

u(t)

Fig. 3. Regime setting in two dimension

Thefollowing ARX model isemployed hereas alocal
model.

b u(t — 1),

Z':17...7nT

Gi(t + 1) =ai"g(t) + 0u(t) +

The regime selection processes by using the integra-
tion and partition algorithms are shown in Figs.4 and
5, respectively. The same fina result is obtained by
both algorithms, and is given by

gt +1)
0.4947§(t) + 1.0078u(t) + 0.5896u(t — 1)
u(t) > 0.5
—0.47509(t) + 1.8473u(t) + 0.2641u(t — 1)
u(t) < 0.5

By comparison of the observations and the estimates
by the proposed algorithm as shown in Fig.6, we can

u(t-1) uey|

| |
I I
I I
I I
I I
I I
I » I
i i
| |
I I
| |
I I
| |
I I

u(t) u()
#(Regime)=1, AIC=0.331 #(Regime)=2, AIC=0.124

Fig. 5. Regime variation by dividing algorithm
find the good performance of the identified model.
This and other examples not shown here (Manabe,

2001) indicate the applicability of the proposed algo-
rithms.

T
— Estimate
—— aservatijon

y(t)

Fig. 6. Modeling result (Number of regimesis 2)

5. CONCLUSIONS

0 This paper has considered automatic selection algo-

rithm of suitable operating regime in loca model-
ing. Based on three criteria, Kullback Discrimina
tion Information (KDI), Akaike Information Crite-
rion (AIC), and Mean Square Error (MSE), we have
devel oped regime integration and partition algorithms
and showed their possible applicability inlocal model-
ing. By combining these two algorithms, better regime
selection will be expected.
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