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Abstract: Integration of topology data of the entire road ahead into the pow ertrain
con trol unitin combination with hybrid electric pow ertrains o�ers a huge potential
for optimising the control strategy. The intension of the present paper is to show a
methodology for computing the maximum potential of fuel saving over a speci�ed
route. For this o�ine calculation a non-linear state-space model of the longitudinal
dynamics is used to �nd the fuel optimal trajectory using Bellman's Dynamic
Programming (DP). As the model is of third order with three con trol inputs and
DP can only be applied to systems with a maximum sum of inputs and states of four,
the iterative varian t of DP is used. This special method described in this paper allows
the solution of optimisation problems with a number of states and inputs up to six,
without leading to insu�erable computing times.
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1. INTRODUCTION

Hybrid electric pow ertrainsare useful to reduce
fuel consumption of cars. In order to e�ect an
economy of fuel, a suitable con trol strategy is
needed. The potential of fuel saving depends on
the route properties, e.g. street-slope and desired
velocit y.Generally speaking, the electric hybrid
pow ertrain giv es a new degree of freedom (the
battery as another energy storage and the elec-
trical engine as a second torque source) and the
telematics information allows us to use this degree
of freedom in a optimal way.

The desire for fuel-optimal behaviour leads to
a dynamic optimisation problem. If the velocit y
pro�le is given, the torque demand is directly cal-
culable. As dynamic state only the SOC (state of
charge) q remains, and the system inputs are the
ratio of combustion engine torque, and electrical
engine torque and the gear i [BaS02]. But if only
a desired velocit y is giv en, the vehicle speed v and

vehicle position s are also dynamic states. Addi-
tionally the number of inputs increases, because
the combustion engine torque and electrical en-
gine torque are then independent from each other,
and it is necessary to use tw o di�erent inputs for
the t w o di�erent torque sources. In this case the
inputs are combustion engine torque TC, electrical
engine Torque TE and gear i. The task now is to
compute the optimal con trol inputs T �C, T

�

E and
i�, which minimize the cost-criteria

J = c1 (q(tf)� qf,d)
2
+ c2 (v(tf)� vf,d)

2

+

tfZ
t0

c3�(n; TC) + c4 (v � vd)
2
dt ! min (1)

Index f means the �nal value or rather the value
at the end of the optimisation horizon and index
d means the desired value. The �rst tw oterms
of equation 1, the so called Mayer-criteria, take
consider the obtained �nal state, the third term,
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Fig. 1. Iterative Dynamic Programming { combination of Dynamic Programming with an adaptive search
tube: example with one state

the Lagrange-criteria, regards the transient be-
haviour. Here the velocity v shall track the desired
velocity vd , and the fuel consumption

tfZ
t0

�(n; TC ) dt (2)

shall be minimized. The function �(n; TC ) is the
instantaneous fuel consumption and is dependent
on engine speed and combustion engine torque.
With the weighting coeÆcients c1 to c4 the 'im-
portance' of the di�erent terms is adjustable.

Overrating the �nal SOC residue by choosing the
co-eÆcient c1 to a greater extent increases the
fuel consumption and vice versa. The desired �nal
SOC is here always 0.5, this means the battery
should be half full at the end of the optimisation
horizon.

A similar relation exists between the fuel con-
sumption, valued by co-eÆcient c3, and the ve-
locity residue, valued by co-eÆcient c4. In prin-
ciple the second term of equation 1, valued by
co-eÆcient c3, is implicitly included in the fourth
term. Co-eÆcient c2 is a useful possibility to in-
uence the numerical behaviour of the algorithm.

Additionally the input and the state signals have
to satisfy the mathematical model of the hybrid
power train:2

4 _s
_v
_q

3
5 = f

0
@
2
4 s

v

q

3
5 ;
2
4 TC

TE
i

3
5
1
A (3)

As with many non-linear relationships like maps
for Torque and Losses or the non-continuous be-
haviour of the gear box this model is non-linear.

The task is now accurately de�ned: solving a
non-linear dynamic optimisation problem. A well
known numerical methodology for calculating
solutions of dynamic optimisation problems is
Bellman's dynamic programming [BeD62]. This
methodology suits both non-linear and time vari-
ant cases and is ideal for determining the global

optimal solution. Unfortunately dynamic pro-
gramming needs a lot of computing power with
high memory requirements to sum up states and
inputs of six. This problem can be reduced by
using a iterative mutation of the dynamic pro-
gramming, the so called iterative dynamic pro-
gramming.

2. ITERATIVE DYNAMIC PROGRAMMING

The �rst step in �nding a numerical solution is to
convert the time-continuous and state-continuous
problem to one with discrete time and discrete
states. By using a numerical integration method-
ology, the time-continuous di�erential equations
are transformed into di�erence equations2
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and the cost-criteria is converted into the form

J = c1 (q(N)� qf,d)
2
+ c2 (v(N)� vf,d)

2

+

N�1X
0

c3�(n; TC) + c4 (v � vd)
2
dt ! min(5)

It is now possible to formulate the optimisation
problem in form of the Bellman's recursive equa-
tion

S� [x(k); k] = min
u(k)2U

n
h [x(N); N ] +

+

N�1X
w=k

f0 [x(w); u(w); w]
o

(6)

(valid for the discrete time steps 0; 1; 2; : : : ; k; : : : ; N).
Equation 6 can be evaluated backwards, starting
with the �nal state at the end of the optimisa-
tion horizon. This procedure is called backward
dynamic programming. Starting from a given �-
nal state its computes the optimal trajectories
starting from an arbitrary start state. A com-
plimentary procedure known as forward dynamic



programming, but this approach owns no rele-
vance in control applications, because it solves
optimisation problems with a given start state to
an arbitrary end state.

In order to evaluate the recursive equation (6)
it is necessary to make the state space discrete.
Then an n-dimensional grid approximates the n-
dimensional state space. With bigger discretisa-
tion rates (and that means with more discrete grid
lines) the accuracy, but also the needed computing
power increases. To reduce this problem Bell-

man has already developed the basic idea of the
Iterative Dynamic Programming (IDP) [BeD62].
The approach is to start with a coarse grid, in
order to get a �rst, but at this time not very
accurate solution. To increase the accuracy, the
grid is constricted about the solution of the last
computing cycle. A new appliance of the dynamic
programming will now provide a new better solu-
tion with an increased accuracy. Figure 1 demon-
strates this procedure for a problem with only one
state. There are only �ve discrete state values and
after the �rst use of the dynamic programming a
solution can be found, marked by the non-�lled
circles. In the next step at the central points
of the new grid will be shifted to the non-�lled
circles, and additionally the distance between two
grid lines will be reduced. Then it is possible to
restart the dynamic programming to get a better
solution. From iteration step to iteration step the
accuracy will increase, because the grid width
decreases during the same procedure.

Generally speaking the grid width of the state-
grid �x and the grid width of the input-grid �u

will be contracted by iteration:

�x(w+1) = 
x
��x(w) ; (7)

�u(w+1) = 
u
��u(w) (8)

The exponent (i) means the i-th iteration and 
x

and 
u
are the contraction matrices


x
=

2
6664

0<x1<1 0 � � � 0
0 0<x2<1 � � � 0
...

...
. . .

...
0 0 � � � 0<xn<1

3
7775 (9)


u
=

2
6664

0<u1<1 0 � � � 0
0 0<u2<1 � � � 0
...

...
. . .

...
0 0 � � � 0<um<1

3
7775(10)

with

n = dimfxg ; m = dimfug (11)

as the dimensions of state-space and input-space.
From iteration step to iteration step also the

central points of the new grid are shifted to the
solution of the step before:

x(w+1)max (k)� x
(w+1)
min (k)

2
= x�(w) (12)

u(w+1)max (k)� u
(w+1)
min (k)

2
= u�(w) (13)

The indices max and min Are marking the upper
and lower limit of the grids.

In simple words, the iterative dynamic program-
ming is just the combination of dynamic program-
ming with a 'adaptive search tube' [Sch66].

Basically it is possible to implement the method-
ology in MatLab-Code. Because of the MatLab
overhead this leads to insu�erable high computing
times. As a consequence, the methodology was
implemented with the programming language C.
The developed software BALU has no restrictions
in the number of states and inputs, but in the
actual version only continues states are supported
[KiS00]. A version without this restriction is under
development. The procedure to solve an optimisa-
tion problem with BALU is

� de�ning the cost-criteria in BALU.C

� de�ning the number and limitations of inputs
and states in BALU.C

� de�ning the number of discrete inputs and
states as well as the number of time steps
and the sampling time in BALU.C

� using the Real-Time-Workshop of Matlab/Simu-
link or the AutoCoder of MATRIXx/System-
Build to generate C-Code of your model

� merging of BALU.C and the generated model
source code

� compiling, linking and running the generated
software

The next chapter presents some results produced
by BALU. All sampling times for the following
results are 0.5 seconds. The modelled vehicle is
based on a real existing super mini car with a
Diesel-engine and Common-Rail Direct Injec-
tion (CDI), a synchronous electrical engine and
a NiMH-Battery. The maximum electrical engine
torque is approximately a third of the maximum
combustion engine torque.

3. RESULTS

3.1 Route with a given slope-pro�le

In the �rst case the optimal solution for a real
existing test route is in demand. This 19510 m
long route is formed from a surrounding road of
Stuttgart. The street slope � is given along the
route(see �gure 2).



Fig. 2. Slope-pro�le of the 'Kernen-Route'

Fig. 3. Optimal inputs T �C, T
�

E and i� for the test
route

Figure 3 shows the optimal input signals for this
route and the cost-criteria 1: The combustion
engine torque T �C , the optimal electrical engine
torque T �E and the optimal gear shift i�. The
desired velocity is constantly 50 km/h. Both recu-
peration and load shift are used by the algorithm
to reduce the fuel consumption. Figure 4 shows
the dedicated optimal trajectories: the vehicle po-
sition s�, vehicle velocity v�, and state of charge
q�. For reducing the fuel consumption it is useful
to undershoot the desired velocity. The size of the
undershoot depends on the value of the coeÆcient
c4 in the cost-criteria 1. With the chosen values
the reducing of fuel consumption is now consid-
ered 'more important' than reaching the desired
velocity.

One complication of the used test route is, that
there are not many parts where recuperation is
possible. Figure 5 shows how the algorithm uses
load shifting for saving fuel. Represented are the
combustion engine eÆciency on this route for a
conventional vehicle; the combustion engine eÆ-
ciency for the hybrid vehicle and the maximal pos-

Fig. 4. Optimal states s�, v� and q� for the
'Kernen-Route'

Fig. 5. Load shifting

sible eÆciency. Most of the time the combustion
engine load is shifted to a better eÆciency.

Particularly the input signals (see �gure 3) are
impinged with noise. One source of it is quanti-
sation noise. Another source is the measurement
noise of the slope pro�le in �gure 2. For the �rst
two inputs, (the torques of the combustion engine
and the electrical engine) it is possible to smooth
the signals without any loss of optimality. This
does not apply to the gear input, as this input is
discrete in reality. To reduce this noise it would be
necessary to establish a further state and to value
it in the cost-criteria.

3.2 Route with a given velocity-pro�le { European
Drive Cycle

In the second example the street slope is constant
and the velocity along the route is given. This
means, that in the cost-criteria 1 the desired ve-
locity vd(s) is a function of the vehicle position.
Figure 6 shows the desired velocity for the Eu-
ropean Drive Cycle (EDC); the �gures 7 and 8,
similar to the case of subsection 3.1, shows the
results of the optimisation process. The desired
velocity of the EDC is well �tted (see �gure 8),



Fig. 6. Desired velocity for the European Drive
Cycle (ECD)

Fig. 7. Optimal inputs ��, T �E and i� for the EDC

Fig. 8. Optimal states s�, v� and q� for the EDC

and the state of charge at the end of the cycle
remains in a allowed range. The variation to a
desired �nal value or the deviation to the desired
velocity is determined by the constants c1, c2, and
c4.

4. CONCLUSION

To �nd out the energy-optimal behaviour of hy-
brid powertrains, it is necessary to solve a nonlin-

ear dynamic optimisation problem. One method-
ology to handle non-linear and time-variant opti-
misation problems is the dynamic programming
technique. Because of higher sums of inputs and
states it is sensible to use an iterative variant
on dynamic programming. This combination of
Dynamic Programming with an adaptive search
tube reduces the needed computing time and the
memory requirement as well. The methodology is
suitable for the cases street slope is given, velocity
pro�le is given and its combination. For a proper
choose of time discretisation and state space quan-
tisation, the methodology computes the global
optimal control, thereby it is useful to determine
the maximum potential of fuel-saving for a given
powertrain driving along a given route.
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