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Abstract: A robust control design method which realizes a required loop shape
formed by nominal performance and robust stability specifications is proposed. An
identification based method is given to design the pre-filter required to obtain the
desired loop shape. Then a H/p method is used in order to handle both the
parametric uncertainties and the unmodelled dynamics together. Thus the robust
performance requirement is also met. The method is demonstrated in an active

suspension design.
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1. INTRODUCTION AND MOTIVATION

The main objectives of the control design are to
reduce the effect of the unmeasured disturbances
and that of the system uncertainties. In the loop
shaping context it means that a compensator
which meets the nominal performance and robust
stability requirements is to be developed. These
methods are close to the designer’s point of view
since the performance specifications can be de-
fined directly for the loop shape. One of their im-
portant advantages is that the desired controlled
system is achieved by the manipulation of the
open-loop gains. A common lack of these type of
methods that they can not guarantee robustness
of the performance against model uncertainties.

A direct loop-shaping method that incorporates
the characteristics of both loop-shaping and H,
design was proposed by McFarlane and Glover
(1992). First, an open loop pre-compensator and
a post-compensator are selected in such a way
that the magnitude of the so-called shaped model
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satisfies the performance requir@eentd, an

Ho synthesis is performed to satisfy the robust
stability requirement. {Hthdtfirit ¢his

method is the selection of the pre-compensator
and post-compensator, which can be done in an
ad-hoc manner. Tiieskgoisltdat the
performance requirements can not always be met
since the design methodology guarantees only ro-
bust stability and the effect of the uncertainties
are not taken into consideration from the perfor-
mance point of view.

A procedure for the designing of pre- and-post
compensators has been #deloped by (1991)
by reordering the inputs and outputs of the
nominal plant and the pre-compensator was se-
lected for low frequency dynamics and the post-
compensator was selected for noise rejection. A
systematic procedure for designing the compen-
sators has been dewdapedrdipu and

Glover (199) by using a kind of an approximative
inner-outer factorization method. A method has
been developed by Vinnicombe (19®) for design-
ing a pre-compensator to make the transfer matrix
from references to outputs equal to some reference
model.



The second step of the loop-shaping method pro-
posed by McFarlane and Glover (1992) consists in
designing a compensator that guarantees robust
stability against model uncertainties. This step
works also as a validation step for the desired
loop shape. However by closing the loop with an
acceptable compensator computed in this second
step, a possible performance degradation will be
obtained in comparison with the performance re-
quirements set by the designer in choosing the
desired loop shape. Moreover little is known about
the robustness of the achieved performance.

In an earlier result of our project a new pre-
or post-compensator choosing algorithm was pro-
posed. To achieve the required loop transfer func-
tion the weighting functions were designed by
an identification procedure. A frequency-weighted
GOBF (Generalized Orthonormal Basis Func-
tions) method is applied to approximate the
required loop shape with higher accuracy and
to emphasize the important frequency domains,
(Géaspar et al., 2000).

In this paper, some new results of our project
are presented. The weighting functions for achiev-
ing a required loop shape are designed by using
an identification procedure for the outer part of
the model. Then a H.,/p synthesis is applied,
in which the performance requirements, the real
parametric uncertainties and the unmodelled dy-
namics can be handled together. Thus, the de-
signed compensator guarantees not only nominal
performance and robust stability but also robust
performance. Comparing our method with the
McFarlane and Glover method, the main differ-
ences are that the required loop shape is approx-
imated by using an identification step instead of
selecting pre- and post-compensators and that the
designed compensator meets robust performance
requirements. These modifications are motivated
by different engineering problems. In practice, one
of the most important difficulties in the design is
that the model contains a large number of com-
ponents, the behavior and properties of which are
unknown, uncertain, or varying during operation.
In this paper the method is illustrated in an active
suspension control problem.

The organization of the paper is as follows. Section
2 presents the steps of the robust control synthe-
sis. Section 3 discusses the design of the weighting
functions. Section 4 discusses the design of the
robust compensator. Section 5 demonstrates the
algorithm in an active suspension design problem.
Finally, Section 6 presents concluding remarks.

2. A LOOP-SHAPING DESIGN PROCEDURE

The specifications on nominal performance and
robust stability are assumed to be available as

a required loop shape, o(L). It means that the
singular value functions of the loop are defined
taking into consideration the disturbance attenu-
ation performance and plant perturbation specifi-
cations.

The steps of the proposed design procedure are as
follows:

e Step 1: Identify a SISO loop transfer func-
tion, ¢, for the frequency response of the
loop-shaping defined by the designer using
the nominal performance and robust stability
specifications. The model must be identified
as accurately as possible in the frequency
domains that are relevant in terms of the
controlled system.

e Step 2: Design weighting functions Kp and
Wy, for the plant model, G, in such a way
that the singular values of the loop transfer
function WoGKF tends toward the required
loop shape. Thus, the transfer function W5
and K is determined so that

o(0)(w) = o(WaGKF)(w).

e Step 3: Design a robust compensator Kg
using the Hoo /1 synthesis, in which both the
parametric uncertainties and the neglected
dynamics are taken into consideration.

e Step 4: Construct the compensator using its
components in the following way:

K = Kp KpWs.

In the next sections the main steps of the loop-
shaping design are presented.

3. THE DESIGN OF A WEIGHTING
FUNCTION TO ACHIEVE A REQUIRED
LOOP SHAPE

The strategy for the computation of the weights
for loop shaping is the following: first, a SISO
minimum phase transfer function ¢ is identified
corresponding to the desired loop shape. The
first step can be performed by a subspace type
algorithm described in Van Overschee and De
Moor (1996). A time domain method is proposed
by McKelvey and Helmersson (1996).

First an inner—outer factorization is performed
corresponding to the plant. If the plant is square
invertible, i.e., G = G,G;, then the weight func-
tion is computed as K = (G, !, the realized loop
being L = (G;.

Since the Ricatti equation based inner-outer fac-
torization methods can be computational inten-
sive for high complexity models, a method based
on Zhang and Freundenberg (1993) is proposed.
A continuous time version is described in Zhang
and Freundenberg (1993) and Shaked (1989). The



main idea is to determine the inner factor by
computing the transmission zeros, the state and
output zero directions of the system. For a MIMO
system of dimension n X n with state space re-
alization (A, B,C, D) the transmission zeros are
defined as the set of complex numbers that satisfy

21— A —-B

mnk[ _C -D

] < 2n,

the multiplicity of z being equal to the algebraic
multiplicity. For a transmission zero z, the left
output zero direction 7 is defined as

n"G(z) =0,
such that n*n = 1.

Let us consider the set {z1,22,--- , 2}, including
multiplicities, of nonminimum-phase zeros of the
transfer function G and the corresponding zero
directions {ny,---,m}. The inner factor G; can
be written as

where
z— Z;

B.(z) =I—Pi+ 1

P, P, =nmn;.
_Eiz (3 K3 Thm

The state space realization for the outer factor
G, is given by (A,B,C,,D,) The method in
Zhang and Freundenberg (1993) uses a step by
step computational process to determine the state
matrix C, of the outer factor. However, it can be
more efficient to perform an identification step for
G, = GG} in order to determine C, and D,, using
a subspace identification method or a generalized
orthogonal basis function expansion method, if
the transfer function G was already parametrized
in these terms.

One can always assume that the plant is proper,
otherwise one can multiply the transfer function
by 2I till this requirement is satisfied.

If the original plant G' with state space realization
(A,B,C,D) was not square and invertible then
one can start from a singular value decomposition
of D of the form

Y0 4
p=o [
By partitioning the matrices U*C = [C; Cy ] and

B
BV = [ Bl] corresponding to this splitting, one
2

has

GoU Ci(21 — A)7'B1 + X Ci(21 - A)7'Bs -
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i.e., by using the weights
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one has to deal with the problem of shaping the
square invertible system

G = C’l(z]I — A)_lBl + 3.

It follows that the plant will be shaped with the
weights

— eG;llo 0 *
Kr = [ 0 0|V
and W5 the achieved loop shape being
_ €GO
L= [ . 0] .

4. A ROBUST CONTROL DESIGN BASED
ON THE Ho/p METHOD

Consider the closed-loop system in Figure 1,
which includes the feedback structure of the re-
quired loop shape, L = WoGKp, the robust com-
pensator K g, and the components associated with
the uncertainty models and performance objec-
tives. Here, u is the control input, y is the mea-
sured output, w is the disturbance, n is the mea-
surement noise, and z represents the performance
outputs. The uncertainties comprise two parts:
the parametric uncertainties are represented by
the A, block, whose input and output are ugs, and
ys, and the unmodelled dynamics is represented
by A,, block, whose input and output are e, and
d. The weighting function W, reflects the model
uncertainties, and A,, is assumed to be stable
with the norm condition, [|A,||, < 1. The W,
represents the weighting functions for the perfor-
mance signals. The weighting function W,, and
Wy represent the impact of the sensor noise n
and disturbance w, respectively. Note, that the
weighting functions Ws, K appear in the scheme
as known components, therefore the new control
input will be @, and the new output will be §. In
the augmented plant structure the realized loop
transfer function WyGKp will take place of the
nominal plant model G.

Us Ys

Fig. 1. Closed-loop interconnection structure

The proposed design problem can be formulated
as a standard P — K — A structure as illustrated



in Figure 2. By applying the weighting functions,
the augmented plant P is as follows:

0 WRGeu,s WRGewWw 0 WRGeu
P = 0 Gysus Gysw w 0 Gysu

0 WpGauy | WpGaoWe 0 |WoGan

I Gyus GyuWy Wy Gyu

The augmented plant P for the shaped plant is

given by:
= Io IO
P=lom]r o]
A, 0
0 A,
d e
w——— P —z
@ y
Kpg

Fig. 2. P-K structure with uncertainties

The closed-loop system is formulated by the lower
linear fractional transformation using the feed-
back law: @ = Kg{, in the following way:

M = Fi(P,Kg) = P11 + P1aKgr(I — PosKg) 1 Po1.

The system M is a 2 x 2 block-structured trans-

M M12] . .
~ -~ |. Applying this
Moy Moo pplying
equation, the analysis and the synthesis of the
robust control problem can be formalized, (Stein
and Doyle, 1991).

fer function matrix: [

The goal of the Hoo/p synthesis is to mini-
mize over all stabilizing controllers K, the peak
value pa() of the closed-loop transfer function
F(P,KRg). The formula is as follows:

min sup pua [F; (P, Kr)(jw)],
Kr

where the admissible set of uncertainties A is
defined as follows:

a0 0
A=|0 A, 0
0 0 4,

where A, represents the parametric uncertainties,
A,, corresponds to the neglected dynamics, and
A, is a fictitious uncertainty block, which is used
to incorporate the Ho, nominal performance ob-
jective into the Hoo/u framework. The optimiza-
tion is an NP hard problem, and an iterative
scheme is used to solve it, (Balas et al., 1991).

After performing the D or D,G steps in the so
called complex p or real p algorithms, respec-
tively, one has to solve the minimization problem
ming ||F (P, K)||oo, where P is the modified aug-
mented plant given by the formulae of type:

(752 75

0 I 0 I
or
5 [ Dmin 0 D Gy 0 Gn 0
P_[OH]P[ 0 ]I]_[OO’

respectively, see (Zhou and Doyle, 1998). This is
the so called K step of the iteration.

One can see that loop shaping does not modify
the part of the augmented plant affected by the
D or D,G step and it influences the K step
only. Therefore by starting the iteration from an
already shaped plant one may ”precondition” the
convergence of the iterative scheme. This is the
fact that motivates our approach in performing
a loop shaping step before setting the Hoo/p
problem. Since the chosen weight is invertible by
construction we do not alter the possibility of
finding a solution, if there is any.

5. DEMONSTRATION EXAMPLE: CONTROL
DESIGN FOR ACTIVE SUSPENSION
SYSTEMS

In the demonstration example the motivation of
this method is highlighted through an active sus-
pension design problem. The main objectives are
to provide good road handling and to improve
passenger comfort while decreasing the harmful
vibrations caused by road irregularities. The diffi-
culties are that the performance requirements are
usually in conflict and that the model to be used
in the control design contains uncertainty com-
ponents. Several methods have been proposed for
this problem, e.g. (Hrovat, 1990), (Yamashita et
al., 1994), (Gaspar et al., 2001). In these methods
the model is augmented with appropriate weight-
ing functions for performances and uncertainties,
and then the loop shape designed is tested in a
verification step.

The quarter-car vehicle model, which is shown in
Figure 3, is used for active suspension designs.
Let the sprung mass and the unsprung mass
be denoted by mg, m,, the suspension stiffness
and the tire stiffness are denoted by ks, k;, and
suspension damping is denoted by bs. The nominal
parameters are the following:

ms = 365kg,m, = 40kg,ks = 18000N/m, k; =
175500N/m, bs = 950N/m//s.

The quarter-car model is a two degrees-of-freedom
system: the vertical displacement of the sprung
mass and the vertical displacement of the un-
sprung mass, x; and z». The disturbance, w, is



caused by road irregularities. The input signal, f
is generated by the actuator, which is modelled
as G, (s) = 1/75%“ The measured output is the
acceleration of the sprung mass. The performance
functions are the acceleration of the sprung mass,
the suspension deflection, the wheel travel, and
the control input.

In the example the loop-shape is defined by the
designer in such a way that the performances are
better than the performances from other tradi-
tional methods and that the robust stability re-
quirement is satisfied. The result of a traditional
LQG method is illustrated by the dashed line
and the required loop shape by the solid line as
illustrated in Figure 4. The first peak corresponds
to the eigen-frequency of the sprung mass. Since
the tire-hop frequency is an invariant point, the
second peak cannot be reduced by a feedback.

In order to simplify the illustration of the de-
sign procedures, it is assumed that the required
loop shape is approximated. It means, that in our
method a weighting function is identified, and in
McFarlane and Glover procedure appropriate pre-
and post-compensators are selected. In this sec-
tion the robust control design step is emphasized.

In order to perform the Ho,/p synthesis, weight-
ing functions are selected both for performances
and uncertainties. The purpose of weighting func-
tions is to keep the vertical acceleration and the
suspension deflection small in the desired fre-
quency range. These are illustrated in the left
hand side of the Figure 5. The control force is lim-
ited by the weighting function 4 - 1073, A typical
weighting function of the unmodelled dynamics is

Fig. 3. Quarter-car model

Froquoncy (ads)

Fig. 4. Required loop-shape (solid) and an LQG
loop-shape (dashed)

is illustrated in the right hand side of the Figure
5.
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Fig. 5. Weighting functions for performances and
robustness

In the Ho/p synthesis, the control design is per-
formed by using the D — K iteration method.
After the Step 2, the peak p-value is 0.915 and
the compensator order is selected 16. It results
in a compensator in which all the nominal perfor-
mance, the robust stability, and the robust perfor-
mance are achieved. At the same time, an optimal
controller is designed by using the McFarlane and
Glover method. The value of the stability mar-
gin as an indication robustness to unstructured
perturbations is 0.70, which indicates a sufficient
robustness stability margin.
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Fig. 7. Time responses of the controlled system

The frequency responses of the controlled system,
i.e. the vertical acceleration, the suspension de-
flection are illustrated in Figure 6. The solid line
corresponds to the Hoo/p synthesis, the dashed
line to the McFarlane method, and the dotted
line to the result of the required system. The first



amplitude peak, which corresponds to the eigen-
frequency of the sprung mass is the smallest in the
Hoo/ 1t design.

The designed controllers are verified in a real
situation, in which the input signal is simulated
as a bump with 0.02m maximal value. The time
responses, i.e. the sprung mass acceleration, the
suspension deflection, the tire deflection, and the
input force, respectively, are illustrated in Figure
7. The solid line corresponds to the Ho,/p synthe-
sis, the dashed line to the McFarlane method. The
effect of the disturbance on the sprung mass accel-
eration is the best in the case of Hoo /g method,
while the suspension deflection is acceptable in all
cases.

6. CONCLUSIONS

In the paper a loop shaping based control design
method has been proposed in order to achieve a
compensator that meets both the robust perfor-
mance and the robust stability requirements. The
proposed method combines loop shaping proce-
dure and the Hoo/p synthesis in order to fulfill
the robust performance requirement.

The weighting function for achieving a required
loop shape is designed by using an identification
procedure for the outer part of the model. In
the augmented plant structure the realized loop
transfer function takes place of the nominal plant
model. Since the shaped plant realizes a desired
performance criteria, by setting the Hoo/p syn-
thesis problem in this context one can obtain a
”preconditioning” in the solution algorithm.

The proposed method is illustrated by a case
study from the vehicle industry.
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