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Abstract: The notion of realization for single-input single-output nonlinear systems is
studied based on a new notion of input/output equivalence. This equivalence relation
aims to generalize the equivalence of linear time-invarian t systems in the sense of the
equality of their transfer functions. Necessary and suÆcient conditions are given for
the existence of a realization, aÆne or not. A minimal (i.e. accessible and observable)
realization may then be derived for those systems which satisfy these conditions, after
seeking an equivalen t reduced order input/output system.
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1. INTRODUCTION

Realization is a longstanding problem in nonlin-
ear control theory as well as its minimality. In
the late 1970's the w orkof Fliess (Fliess, 1980)
solv ed the realization problem for the nonlinear
systems with the generating series expressions.
Necessary and suÆcient conditions were giv en in
terms of the Lie R ankof the generating series.
More recen tly,generalized realizations (i.e. de-
pending upon deriv atives of the input) w erede-
rived in (Fliess, 1990; Fliess and Glad, 1993) using
a di�erential algebraic approach. Conditions are
giv en in (Freedman and Willems, 1978; Delaleau
and Respondek, 1995) under which there exists a
transformation so that the derivatives of the input
are eliminated and these results may be viewed as
conditions for which a realization exists.

In this paper a classical question is discussed and
answered: when does an input/output equation

have a state space realization? The approach in
this paper is related to (Crouch and Lamnabhi-
Lagarrigue, 1992; Crouch et al., 1995; Sontag,
1988). In (Sontag, 1988) attention is restricted
to bilinear reachability. A de�nition of realization
is giv en in (Crouch and Lamnabhi-Lagarrigue,
1992) as well as a necessary condition for an in-
put/output di�erential equation to have an aÆne
state space realization.

The goal of this paper is to give a de�nition of
realization for an input/output equation, which
fully incorporates the linear theory, andto c har-
acterize the existence of such a localrealization.
All statements and computations in this work are
valid around regular points, i.e. on a suitable open
and dense subset of IRN for some integer N . We
explicitly de�ne when a state space system gen-

erates or realizes a given input/output equation.
T o our best knowledge, the di�erence betw een
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the two notions has never been well described for
nonlinear systems.

Consider a nonlinear single-input single-output
(SISO) system described by the input-output dif-
ferential equation:

y(k) = '(y; _y; : : : ; y(k�1); u; _u; : : : ; u(s)): (1)

with @'=@u(s) 6= 0. The integer k is said to
be the order of system (1). Furthermore, assume
that '(y; _y; : : : ; y(k�1); u; : : : ; u(s)) is an analytic
function on an open dense subset M of IRk+s+1.

Example 1. Consider the three input/output dif-
ferential equations

_y � yu = 0; (2)

d

dt
( _y � yu) = �y � _yu� y _u = 0 (3)

and

d

dt
( _y � yu)� u( _y � yu) = �y � yu2 � y _u = 0(4)

Note that any solution of (2) is a solution of (3)
and (4). With respect to the associated state space
representation and its minimality, the three sys-
tems may hardly be considered to be equivalent.
Consider the accessible and observable state space
system

_x = xu

y = x
(5)

The elimination of the state x in (5) yields (2) and
suggests that (5) is a minimal realization for (2).
Let

_x1 = x1u+ x2
_x2 = 0
y = x1

(6)

which is not accessible. The elimination of the
state in (6) suggests again that (6) is a (non
minimal) realization for (3). In a similar vein,

_x1 = x2 + x1u

_x2 = �x2u
y = x1

(7)

is accessible and observable and yields (4).

Deciding which state space system is a realization
of which input/output equation deserves special
attention and motivates this paper. The theory
which is developed will establish that (5) is a
minimal realization of (3), but is not a realization
of (4). Note that any solution of (2) is also a
solution of both (3) and (4).

Section 2 is devoted to observable realizations
generating a given input/output system. De�ni-
tion 2 states the so-called notion of generating
system. Necessary and suÆcient conditions are
given for the existence of aÆne or non aÆne real-
izations. Section 3 is devoted to the key point of
input/output equivalence; an equivalence relation
is de�ned between input-output di�erential equa-
tions. It enables to formalize the order reduction
in the nonlinear setting. This order reduction gen-
eralizes the process of reduction of transfer func-
tions in the case of linear time invariant systems.
The irreducibility of an input/output system is
de�ned as well, and it is used to tackle minimality
of the realization. A general notion of realization
is displayed in De�nition 20.

2. OBSERVABLE REALIZATIONS

Before introducing an input/output equivalence
relation and de�ning general realizations, let us
�rst de�ne the notion of generating system for
a given input/output equation. The latter will
appear to be a special case of realization. Then,
conditions for the existence of such an observable
generating system will be derived.

Consider

y(k) = '(y; _y; : : : ; y(k�1); u; : : : ; u(s)) (8)

with s < k and a state space system:

_x = f(x) + g(x)u;
y = h(x)

(9)

where x belongs to an open subset of IRn. The
system (9) yields a set of algebraic equalities:

y = h(x)
_y = h1(x; u)
...

y(n�1) = hn�1(x; u; : : : ; u
(n�2))

(10)

If (9) is an observable control system, then the
observable codistribution, which spanned by the
di�erentials of all functions in observation space,
is n-dimensional ((Isidori, 1995; Zheng and Cao,
1993)). I.e. over the �eld of meromorphic functions
of x, u and the time derivatives of u

rank
@(h; h1; � � � ; hn�1)

@(x1; x2; � � � ; xn)
= n

Let �x0 = (x0; u0; :::; u
(n�1)
0 ) be a point in IR2n

and a neighborhood V (�x0) of �x0 such that the

rank of
@(h;h1;���;hn�1)
@(x1;x2;���;xn)

is constant (when evaluated

over IR) over V (�x0). It turns out that (10) can be
solved , in the state variables xi; i = 1; : : : ; n as

x = �(y; _y; : : : ; y(n�1); u; _u; : : : ; u(n�2)) (11)



for any (x; u; :::; u(n�1) 2 V (�x0). Consider

y(k) = Lk
fh+ LgL

k�1
f hu+ : : :+ (Lghu)

(k�1)

= hk(x; u; : : : ; u
(k�2)):

(12)

De�nition 2. The observable system (9) is said to

be a generating system locally around (y0; :::; y
(n�1)
0 ;

u0; :::; u
(n�2)
0 ) for the input/output system (8) if

there exists a neighborhood

V (y0; :::; y
(n�1)
0 ; u0; :::; u

(n�2)
0 ) such that substi-

tuting xi; i = 1; : : : ; n in (11) into (12) yields (8).

A similar de�nition can be derived for a non-aÆne
state space system

_x = f(x; u);
y = h(x)

(13)

generating a given input/output equation.

A consequence from De�nition 2 is that if (9) is a
generating system for (8), then n � k.

Example 3. The system

8<
:

_x1 = x2 + u

_x2 = 0
y = x1

(14)

is a generating system for the input/output equa-
tion �y = _u but it does not generate the in-
put/output equation _y = u. The system

�
_x = u

y = x

is a generating system for both �y = _u and _y = u.

Example 4. The system

8<
:

_x1 = x2 + u

_x2 = x22
y = x1

is a generating system for �y = ( _y � u)2 + _u.

The following material was �rst established for
discrete-time nonlinear systems in (Kotta et al.,
1997).

Consider the SISO nonlinear system

y(k) = '(y; : : : ; y(k�1); u; : : : ; u(s)) (15)

where @'=@u(s) 6= 0 with s � 0.

Associate a so-called extended system �e to (15),
de�ned as

�e :
d

dt

2
66666666666664

y
...

y(k�2)

y(k�1)

u
...

u(s�1)

u(s)

3
77777777777775

=

2
6666666666664

_y
...

y(k�1)

'

_u
...

u(s)

0

3
7777777777775

+

2
6666666666664

0
...
0
0
0
...
0
1

3
7777777777775

u(s+1)(16)

= fe + geu
(s+1)

For completeness, let us adapt to system (16)
the setting introduced in (di Benedetto et al.,
1989; Conte et al., 1999; Fliess, 1990). De�ne the
di�erential �eld K of meromorphic functions in
a �nite number of variables y; u and their time
derivatives, associated to system (15). Let E be
the formal vector space E = span

K
fd' j ' 2 Kg,

K(x;u) denote the �eld of meromorphic functions
of x, u and the time derivatives of u. Then we
have the following preliminary result whose proof
follows from De�nition 2.

Lemma 5. Assume that the system (9) is a gen-
erating system for (15). The �eld K(x;u) associ-
ated with system (9) and the �eld K associated
with equation (15) can be identi�ed. That is, for
any � 2 K(x;u) there exists an unique element
 (y; _y; � � � ; u; � � �) 2 K such that, after the sub-
stitutions (10) and (11), the two functions � and
 are equal.

Conversely, for every element  (y; _y; � � � ; u; � � �) 2
K there exists unique element � 2 K(x;u) such
that, after the substitutions (10) and (11), the two
elements � and  are equal.

De�ne the following subspaces of E

H1 = span
K
fdy; d _y; : : : ; dy(k�1); du; : : : ; du(s)g

and more generally

Hi+1 = span
K
f! 2 Hi j _! 2 Hig (17)

The following theorem gives an intrinsic necessary
and suÆcient condition for the existence of an
observable realization. Alternative (algorithmic)
conditions may be found in (Delaleau and Respon-
dek, 1995): starting with a so-called generalized
state realization (Fliess, 1990), necessary and suf-
�cient conditions for the reduction of the order
of time derivation of u may be checked step after
step.

Theorem 6. There exists an observable state space
system

�
_x = f(x; u)
y = h(x)

(18)



which is a generating system for (15) { locally

around any point (y0; :::; u
(s)
0 ) in some suitable

open dense subset of IRk+s+1 { if and only if

� k > s

� and, Hi is integrable for each i = 1; : : : ; s+2.

Proof

SuÆciency. Let fd�1; : : : ; d�kg be a basis of
Hs+2. From the construction of the subspaces Hi

we have

Hs+1 = Hs+2 � span
K
fdug

Hs = Hs+2 � span
K
fdu; d _ug

...

H1 = Hs+2 � span
K
fdu; : : : ; du(s)g

(19)

Introduce the following coordinate transformation
for the system (16):

x1 = �1(y; _y; : : : ; u
(s))

...

xk = �k(y; _y; : : : ; u
(s))

xk+1 = u
...

xk+s+1 = u(s)

(20)

By (17) and that Hs+2 � Hs+1, one has d _xi =
d _�i 2 Hs+2 � span

K
fdug; i = 1; � � � ; k: Thus,

d _xi =
Pk

j=1 �ijdxj + �du, for each i = 1; � � � ; k.
Let x = (x1; : : : ; xk). Thus, at least locally _x =
f(x; u). The assumption k > s indicates that the
output y depends only on x.

Necessity. Assume that the observable state
space system (18) is a generating system for the
input/output system (15). Since the state space
system is proper, necessarily k > s. From Lemma
5 the subspaces Hi can be identi�ed with the ~Hi:

~H1 = span
K(x;u)fdx; du; : : : ; du

(s)g
...

~Hs+1 = span
K(x;u)fdx; dug

~Hs+2 = span
K(x;u)fdxg

From (20) the spaces Hi are integrable as ex-
pected.

Example 7. Let �y = _u2, and compute

H1 = span
K
fdy; d _y; du; d _ug

H2 = span
K
fdy; d _y; dug

H3 = span
K
fdy; d _y � 2 _udu)g

Since H3 is not integrable, there does not exist
any state space system generating �y = _u2.

Example 8. Let �y = u2. The conditions of Theo-
rem 6 are ful�lled and the state variables x1 = y,
and x2 = _y yield _x1 = x2, _x2 = u2, y = x1 which
is a generating system for �y = u2.

The conditions given by Theorem 6 can be ex-
tended to derive a characterization of the exis-
tence of an aÆne generating system as follows.

Corollary 9. There exists an aÆne state space
system �

_x = f(x) + g(x)u
y = h(x)

which is a generating system for (15) { locally

around any point (y0; :::; u
(s)
0 ) in some suitable

open dense subset of IRk+s+1 { if and only if

(i) Hi is integrable for each i = 1; : : : ; s+ 2
(ii) _� = F (�) +G(�)u for some F and G, where

fd�g is a basis of Hs+2.

[Note that condition (ii) does not depend on the
choice of the basis fd�g of Hs+2.]

Proof: This follows from the proof of Theorem 6
and from the fact that the input aÆne structure
remains unchanged under state transformation.

3. INPUT-OUTPUT EQUIVALENCE AND
MINIMAL REALIZATIONS

The heart of the analysis of (15) will be exten-
sively based on the accessibility property of �e.
The standard strong accessibility distribution as-
sociated with (16) is denoted as:

L := span
K
fadifege; i � 0g (21)

In this section we will formalize the notion of
reduction to obtain the notion of input/output
equivalence, and a de�nition of realization.

De�nition 10. (Irreducible input-output system).
The system (15) is said to be an irreducible input-

output system if the associated system (16) satis-
�es

L? = 0

Example 11. (Example 1 cont'd). �y = yu2+ y _u is
irreducible since

d

dt

0
BB@
y

_y
u

_u

1
CCA =

0
BB@

_y

yu2 + y _u
_u
0

1
CCA+

0
BB@
0
0
0
1

1
CCA �u

satis�es the strong accessibility rank condition.
It is worth to note that the set of solutions
(u(t); y(t)) of _y = yu is a subset of the set of
solutions of �y = yu2+ y _u, but �y� yu2� y _u = 0 is
irreducible.

Example 12. �y = _u + ( _y � u)2 is not irreducible
since



d

dt

0
BB@
y

_y
u

_u

1
CCA =

0
BB@

_y
_u+ ( _y � u)2

_u
0

1
CCA+

0
BB@
0
0
0
1

1
CCA �u

does not satisfy the strong accessibility rank con-
dition. However, d( _y � u) ? L and we will claim
that _y = u is an irreducible input-output system
of �y = _u+ ( _y � u)2.

We are interested in minimal, i.e. observable and
accessible realizations and will assume from now
on that the input/output system (15) admits
an observable generating system. Introduce the
following de�nitions of reduced di�erential form
and of reduced input-output system.

De�nition 13. (Reduced di�erential form). An ex-
act
form d�0 is said to be a reduced di�erential form

of system (15) if

(a) d�0 6� 0
(b) and d�0 2 L? where L is the accessibility

distribution of (16) de�ned in (21).

De�nition 14. (Reduced input-output system). Let
d�0 be a reduced di�erential form, which produces
the di�erential equation

�0(y; � � � ; y(k
0

�1); y(k
0); u; � � � ; u(s

0)) = 0 (22)

such that @�0=@y(k
0) 6= 0, @�0=@u(s

0) 6= 0,

@2�0=@y(k
0)2 � 0 with k0 > 0, s0 � 0. Equation

(22) has an unique solution

y(k
0) = '0(y; � � � ; y(k

0

�1); u; � � � ; u(s
0)): (23)

Then (23) is called a reduced input-output system

of system (15).

De�nition 15. (Irreducible di�erential form). If (23)
is an irreducible input-output system in the sense
of De�nition 10, then d(y(k

0)�'0) is said to be an
irreducible di�erential form of (15).

Example 16. (Example 3 cont'd). d( _y � u) ? L
and _y = u is an irreducible system. Thus, �0 = _y�
u = 0 is an irreducible input-output system of
�y = _u+ ( _y � u)2.

An irreducible input-output system cannot be
associated to every input-output system. Consider

�y =
_y _u

u
(24)

d�0 = d( _y=u) is a reduced di�erential form of
(24). Thus, system (24) is not irreducible. Let
�0 = _y=u = 0, which is not an irreducible input-

output system in the sense of the above De�ni-

tion. Therefore, system (24) does not admit any
irreducible input-output system.

We now restrict our attention to the family of
input/output systems which admit an irreducible
input-output system. It is possible to introduce
an equivalence relation. First we need to prove
the unicity of the irreducible input-output system
associated to a given system, if any.

Lemma 17. If the system

y(k) = �(y; : : : ; y(k�1); u; : : : ; u(s)) = 0 (25)

admits an irreducible input-output system, then
the order of the irreducible input-output system
equals k � dimL?.

Proof Let dim L? = r, it follows from (Zheng et

al., 1995) that H1 = L? and then the order of
irreducible input-output system associated to (25)
equals � = k � dim H1 = k � dim L? = k � r.

By means of the results of (?; Zheng et al., 1993)
we can show that

Lemma 18. If (25) admits an irreducible input-
output system, then its irreducible input-output
system is uniquely de�ned in the form

y(�) = '(y; : : : ; y(��1); u; : : : ; u(�)): (26)

It is now possible to introduce the following equiv-
alence relation within the class of systems which
admit an irreducible di�erential form.

De�nition 19. (Input-output equivalence). Two sys-
tems �1 and �2, which are supposed to admit
an irreducible di�erential form, are said to be
input/output equivalent if they have the same
irreducible input-output system representation of
the form (26).

Now we give a general de�nition of realization.

De�nition 20. (Realization). A state space sys-
tem (9) is said to be a realization of the in-
put/output system (15) if (9) is a generating sys-
tem for an input/output equation { locally around

any point (y0; :::; y
(�)
0 ; u0; :::; u

(�)
0 ) in some suitable

open dense subset of IR�+�+1 for some suitable �
and � { which is input/output equivalent to (15).

The system (15) is said to be realizable if there
exists a realization in the sense of De�nition 20.
Note that the case of generating system as in
Section 2 is a special case of this general notion of
realization.

The notion of minimality here is standard for lin-
ear systems and means that a state space system



is both observable and accessible. For nonlinear
systems (Isidori, 1995) it is commonly accepted
as well, although other approaches to minimality
exist in the recent literature, where only observ-
ability is requested (Diop and Fliess, 1991). From
the previous results we can now state the follow-
ing.

Theorem 21. Given an input/output system (15),
assume that the conditions in Theorem 6 are
ful�lled. Then there exists an observable and
accessible, i.e. minimal, realization of order k

for (15), if and only if (15) is an irreducible
input/output system.

Proof: Given (15), the generating system (18)
obtained from Theorem 6 is observable. The ex-
tended system (16) can be written in the coordi-
nates (20). It then reads as the composite system
of system _x = f(x; u) and the controllable string
of integrators _u(i) = u(i+1), i = 0; :::; s. Thus,
(16) is accessible if and only if (??) is accessible.
The result of Theorem 21 follows since (16) is
accessible if and only if (15) is irreducible, by
De�nition 10.

Example 22. Consider (2) and (3) in Example 1.

Let � = �y� _yu� y _u. Compute fe =

0
BB@

_y
_yu+ y _u

_u
0

1
CCA

and ge =

0
BB@
0
0
0
1

1
CCA. The distribution L is spanned

by

8>><
>>:

0
BB@
0
0
0
1

1
CCA ;

0
BB@
0
y

1
0

1
CCA ;

0
BB@

y

uy

0
0

1
CCA

9>>=
>>;
. Thus, d�r = d( _y�

yu) 2 L?. An irreducible di�erential form of
� = 0 is d�r = d( _y � yu). A minimal realization
is obtained for _y = yu.

4. CONCLUSION

General necessary and suÆcient conditions have
been obtained for the existence of aÆne and
non-aÆne (observable) realizations of a nonlinear
system which is a generating system for a given
input/output di�erential equation. A notion of
input/output equivalence has been given which

� yields a new de�nition of realization that is
consistent with a standard notion of mini-
mality, including minimal linear state space
representations,

� generalizes equality of transfer functions, up
to factor reduction.
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