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Abstract: This paper focuses on estimation of the vertical velocity of the vehicle chassis and
the relative velocity between chassis and wheel. These velocities are important variables in
semi-active suspension control. A model-based estimator is proposed including a Kalman
filter and a non-linear model of the damper. Inputs to the estimator are signals from wheel
displacement sensors and from accelerometers placed at the chassis. In addition, the control
signal is used as input to the estimator. The Kalman filter is analyzed in the frequency domain
and compared with a conventional filter solution including derivation of the displacement
signal and integration of the acceleration signal.
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1. INTRODUCTION

Volvo Car Corporation is presently developing a con-
troller for semi-active dampers, called continuously
controlled chassis concept (4C). The 4C controller has
been applied to a so-called performance concept car
(PCC). This is a high performance car, implying stiff
tires and stiff springs. An important part of the con-
troller is the ability to estimate the damper velocity,
i.e. the relative velocity between chassis and wheel.
It is also important to be able to estimate the vertical
velocity of the chassis since it affects the ride comfort
for the driver. Due to the stiff tires, the bandwidth from
road irregularities to damper velocities is high. This
fact makes the design of the controller and the velocity
estimation extra challenging.

The aim of this work is to design a filter that estimates
the damper velocity and the chassis velocity. The esti-
mation is based upon wheel displacement signals and
accelerometer signals from the chassis. Two filters are
proposed. First, a model-based estimator is derived
including a model of the damper and a Kalman filter.
The Kalman filter is based on a quarter car model. This
filter is compared to a more conventional filter solution

including a derivation of the wheel displacement sig-
nal, and integration of the accelerometer signal. The
conventional filter includes a high-pass and a low-pass
Butterworth filter respectively. This work considers
both disturbances from road irregularities and from
forces acting on the vehicle body. Such forces arise
from e.g. braking and handling maneuvers.

State estimators have been considered in some pa-
pers, see e.g. (Hedrick et al., 1994; Irmscher and
Hees, 1996; Yi and Song, 1999). Hedrick et al. (1994)
and Yi and Song (1999) assume that the damper force
velocity characteristics are linear. This assumption
makes it possible to design an observer based on a
bilinear system. However, this assumption is not ap-
plicable in this work since the Volvo dampers operate
in a range where the force velocity characteristics are
non-linear.

2. QUARTER VEHICLE MODEL

The Kalman filter derived in this work is based on
a so-called quarter vehicle model. This model is of
course a simplification of the reality. However, it is
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reasonable to believe that for this filtering application
this kind of model reflects important parts of the true
vehicle dynamics.

Consider the quarter vehicle model pictured in Fig. 1.
The coordinates are chosen such that the system is
in steady state when ��������������	
��� . The
vehicle dynamics are described by the following set
of equations:

�����������������������������! "�#�%$�����&$�����'���(	������)����	#�*�!+�,
-	����	����(	������)����	#����+�,.�!+�/

Here +�, represents the force generated by the damper.
External forces acting on the sprung mass arising from
e.g. cornering and braking are here denoted by +(/ .
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Fig. 1. Quarter model of a vehicle with an unsprung
mass �� and sprung mass 0	

3. MODEL BASED ESTIMATOR

The purpose of the estimator is to estimate the damper
velocity ��$��	1�2$����� and the velocity of the chassis $��	 .
The estimated values are based on output signals from
the 4C controller, sensor signals from accelerome-
ters measuring the vertical acceleration ���	 , and sig-
nals from wheel displacement sensors measuring the
relative position ����	3�4����� . The sensors are further
described in Appendix A.

In Fig. 3 a schematic picture of the estimator is shown.
The estimator includes a non-linear damper model, a
linear Kalman filter, and a mapping of acceleration
measurements from sensor positions to wheel posi-
tions. The damper model is described in Section 3.1
while the Kalman filter is considered in Section 3.2.
The mapping of the acceleration measurements is
elaborated in Appendix A.

3.1 Damper model

The estimator contains a simple model of the damper
behavior, see Fig. 4. The damper model estimates the
damper force +5, based on the output from the 4C
controller (volt) and the estimated damper velocity66 � �87��	1�97����� . The model is built up from five blocks.
The damper dynamics including the valve are repre-
sented by a transfer function. A look-up table maps
the damper velocity and volt input to the damper force,
and a saturation block limits the velocity signal to fit
within the limits of the look-up table. The two gains
compensate for the fact that the damper is tilted. In
this work, these gains are considered as constants. In
reality, the damper ratio is a function of wheel dis-
placement.
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Fig. 2. Static model of damper force as a function of
voltage and velocity

The static mapping from velocity and volt to force is
an important characteristic of the damper. Fig. 2 shows
this mapping for the semi-active dampers used in the
4C project. The opening and closing times of the valve
in the damper result in dynamics in the damper. In
this work these dynamics are represented by a second
order system with a rise time of 10 ms. In reality the
damper dynamics depend on the of the damper veloc-
ity. The dynamics are also different in the compression
phase compared to the expansion phase. Furthermore,
in a more complex model additional dynamics should
be included due to oil elasticity.

3.2 Kalman Filter

The Kalman filter is a linear and discrete-time MIMO
transfer function. This filter is an optimal solution to a
minimization problem that is based on a plant model,
i.e. the quarter car model described in Section 2, and
on process and measurement noise covariance data. In
addition, weighting filters are added to the model in
order to achieve the desired properties of the Kalman
filter.

The following three requirements are to be fulfilled
when designing the controller:
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Fig. 4. Simulink block containing the damper model� to achieve desirable bandwidth of the estimator.� to minimize the influence of the measurement
noise.� to avoid drifting in estimation of $��	 due to DC-
offsets in the accelerometer signals.

Fig. 5 shows the choice of weighting filters that have
been applied in the Kalman filter design. The choice
of weighting filters is commented upon further down.
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Fig. 5. Design of Kalman filter including the quarter
vehicle model and additional weighting filters

The Kalman filter is tuned by choosing a suitable set
of noise covariance matrices. Let the quarter vehicle
model and the weighting filters pictured in Fig. 5 be
described by the following state-space form:

� ����� ����� ��	�
� ���� ����� ����
 ���
Here � denotes the known input, 
 denotes the process
noise and � denotes the measurement noise, see Fig. 5.
The noise covariance is then defined as��� 
�
���� �����! ��� �"�#�$� �&%��! ��� 
��#�$� �&'(�! 

In this work, the noise covariance matrices have been
chosen in the following way:
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Now follows some remarks regarding the filter design:� It is reasonable to consider the velocity of the
road input $��� instead of the road position ��� in
the Kalman filter design. Therefore, an integrator
is placed before ��� .� Two integrators are added to the measurement
outputs. The integrator added at the accelera-
tion measurement avoids drifting of the esti-
mated output )>MN)+O57��	 when the ���	 -signals are
exposed to DC-offsets. Such effects arise when
the chassis pitches or rolls. The integrator causes
the Kalman filter to behave as a high-pass filter.
Hence the Kalman filter do not consider DC-
offsets in the sensor signals. The drawback is
that the Kalman filter will not be able to detect
true DC-inputs, as for example when driving in a
long slope. The integrator added at position mea-
surement improves the low-frequency behavior
of the Kalman filter, especially when estimating
velocities due to external force inputs +5, .� The Kalman filter tuning is a compromise be-
tween filter bandwidth and reduction of measure-
ment noise. If the bandwidth is too high, then
the designed filter will be useless since it will



amplify measurement noise from the wheel dis-
placement sensors too much.� In this work a continuous-time Kalman filter is
first derived. A corresponding discrete filter is
then computed using linear interpolation of the
inputs (triangle appx.), see the c2d-command in
Matlab.

An alternative to the Kalman filter approach is to take
the derivative of the position signal and to integrate
the acceleration signal in order to obtain the desired
velocity signals. Due to the problem of measurement
noise and DC-offsets, these estimated values have to
be filtered through a low-pass and high-pass filter
respectively. In the following section, this filtering
solution is compared with the proposed Kalman filter.

4. ANALYSIS OF KALMAN FILTER

In this section, the proposed Kalman filter is analyzed.
Frequency analysis is a powerful tool for analysis
of linear transfer functions. A problem with the pro-
posed estimator is that the damper model is non-linear.
Therefore, for the sake of analysis, in this section
a linear passive damper will replace the semi-active
damper.

The Kalman filter will be compared to another filter
solution, namely a derivation and an integrator in com-
bination with Butterworth filters. Fig. 6 shows how
the vehicle model described in Section 2 is combined
with the proposed Kalman filter and with the deriva-
tive/integrator filter solution. The derivative/integrator
filter is designed so that the maximum gains from
measurement noise to estimated outputs are equal with
the corresponding gains of the Kalman filter. Note that
all transfer functions in Fig. 6 are linear. Hence it is
possible to analyze how the inputs +5/ and $��� affects
the estimated outputs in the frequency domain.

Consider the quarter model and the proposed estima-
tors pictured in Fig. 6. Define the estimation errors
� 6������ and ��	 as

� 6������ � ��$��	 �
$�����'�
))+O �87��	 � 7����� (1)

��	��
$��	 � ))+O 7��	 (2)

Fig. 7 shows the Bode plot of � +5/I $���8��� �	� 6������  ���	#�
for the two filters. For the sake of comparison the Bode
plot of � +�/I �$���8�
� �%$��	 �
$���  $��	#� is added in Fig. 7.

It is not obvious how to define bandwidth for a MIMO
system like the proposed Kalman filter. In this work
the bandwidth is defined as the region where the
relative error � +�/  $��� ��� �	� 6������ M%��$��	�� $�����  ���	AM $��	#� is
larger than -3dB. For this damper application the filter
bandwidth has been chosen to range from 0.5 Hz to
30 Hz. Analysis shows that both the proposed filters
attain the desired bandwidth.

Fig. 7 shows that the quarter car model has two res-
onance peaks, one representing the eigenfrequency of
the unsprung mass (approx. 1 Hz) and one represent-
ing the eigenfrequency of the sprung mass (approx. 12
Hz). The Kalman filter is superior to the Butterworth
filter in estimating velocities originating from forces
on the sprung mass +5/ , see Fig. 7. Regarding estima-
tion of velocities originating from road irregularities
the advantage of Kalman filtering over the deriva-
tive/integrator filter solution is not so clear. Fig. 7
shows that when estimating �%$��	5�!$����� the Kalman filter
is advantageous for frequencies about the unsprung
mass eigenfrequency, while when estimating $�5	 the
Kalman filter is advantageous for frequencies about
the sprung mass eigenfrequency.

When designing a model based estimator it is impor-
tant to analyze robustness of the estimator. In this ap-
plication, it is especially important to check robustness
with respect to variances in sprung mass at the rear
axle. In practice, this variance could be due to varying
load in the trunk or refueling. Analysis shows that the
proposed Kalman filter is robust with respect to model
uncertainties.

The Kalman filter and the derivative/integrator filter
have also been tested on data generated from exper-
iments on a Volvo V70. As mentioned before, the
amplitude of the measurement noise limits the fil-
ter bandwidth. Therefore, it is interesting to analyze
how the proposed filters amplify measurement noise
on the estimated output. This analysis is shown in
Fig. 8. The analysis is performed in open-loop, i.e.
the quarter model and the controller is not included
in the analysis. During the experiment, the vehicle is
at standstill while the engine is running idle. This fact
explains the difference in noise amplitude between the
front and the rear axle. Note that even if the engine
is running, the sensor signals should be considered
as measurement noise. The reason for this is that the
wheel displacement sensors have been mounted in
such a way that the vibrations have a larger impact
on the measurement signal than on the actual damper
displacement. Hence, better isolation of the wheel dis-
placement sensors from engine vibration would im-
prove estimation quality.

5. CONCLUSIONS

This paper describes the development of a model-
based estimator that estimates the vertical velocity of
the chassis and the relative velocity between chas-
sis and wheel. The suggested estimator includes a
Kalman filter and a model of the damper. The Kalman
filter is compared to a conventional filter solution in-
cluding a derivation of the wheel displacement signal
and integration of the acceleration signal.

The Kalman filter is superior to the derivative/integrator
filter solution in estimating velocities originating from
forces on the sprung mass +5/ . Analysis also shows that
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Fig. 7. Bode plot of � +5/  $��� � � �	� 6������  ���	#� . The quarter model gain is also pictured. The vertical lines represent
the desired bandwidth of the filter

regarding velocity estimation originating from road ir-
regularities the advantage of the Kalman filter is more
ambiguous. The Kalman solution is preferable when
estimating ��$��	3� $����� for frequencies about the un-
sprung mass eigenfrequency, and when estimating the
chassis velocity $��	 for frequencies about the sprung
mass eigenfrequency.

There are minor differences in computational com-
plexity between the two proposed estimators. The But-
terworth filters including the integrator have six states
in total. The model-based estimator has eight states in
total. In addition the model based estimator contains a
table-lookup.

The estimator design presented in this paper is based
on wheel displacement signals and on body acceler-
ation signals. An alternative sensor setting is to mea-
sure the vertical acceleration both at the wheel and at
the body. A corresponding strategy for Kalman filter
design is applicable to this sensor setting.
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Appendix A

Consider the quarter model shown in Fig. 1. The
following vehicle parameters for a Volvo V70 are used
in this work: �(	0� 2 � �5�5� N/m, ��� � 2 9(�5�5�5� N/m, "� � 4�� Ns/m, �� � 4�� kg, -	 � 9#4�� kg at the
front, and -	����/9(� kg at the rear.

The following vehicle parameters are used, see Fig. A.1:� � 7�� 7 2 m,  � 7�� ��� m, � � 7�� 454 m, � � 7�� 4	� m,
� � �
� ��� 4 m, +���2� � m, and � � �
� ��� m.

The task is now to calculate the chassis accelerations
at the wheels based on measurements from the ac-
celerometers shown in Fig. A.1. The calculations are
done under the assumption that the chassis is rigid.
Observe that the accelerometers measure the vertical
acceleration perpendicular to the chassis.

It can be shown that the vertical acceleration at any
point of the chassis � �
�  1���5� is given by

����)�
������0��� ������ ���
Here ������ denotes the vertical acceleration at the cen-
ter of gravity. Let � �
������ . Then
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Fig. A.1. Car seen from above. The symbol � denotes
the position of the accelerometers R, FR, and FL
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The vertical acceleration at any point � �
�  1���5� of the
chassis is then given by
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