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Abstract:
Fuzzy modelling has interpretability of the obtained models as a fundamental goal. In this
paper a control-oriented local-model fuzzy clustering algorithm will try that local models
approximate the linearized plant model on their validity zones. A family of clustering
algorithms is presented so that it incorporates some desirable characteristics regarding
convexity and smoothness of the final identified clusters, with advantages regarding other
methodologies such as Gustaffson-Kessel. The algorithm simultaneously provides local
linear models and input clustering, being suitable for Takagi-Sugeno models and local linear
models decomposition of complex systems.Copyright ©2002 IFAC
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1. INTRODUCTION

A suitable modelling and identification of a system is
essential for a successful subsequent control design,
and the same applies to supervision and fault detection
systems (Aström and Wittenmark, 1997). However,
classic modelling techniques are not applicable to
complex systems such as those in biochemical and
chemical engineering, social models, aerospace, etc.
Many of these systems are characterised by noisy data
and significant nonlinearities.

Artificial intelligence (AI) and, in particular, fuzzy
logic (FL) are widely used techniques to deal with
complex systems because of its universal function
approximation (UFA) capabilities (Wang, 1997) and
the parallelism to human reasoning processes.Fuzzy
modelstry to incorporate additional qualitative or im-
precise information that engineers or operators have
about systems.

1 Partially supported by project GV00-100-14, regional govern-
ment and the authors’ institution.

The main problem in identifying fuzzy models from
data appears whenstructure identificationis per-
formed (Sugeno and Yasukawa, 1993). Subsequently,
parameter identificationmust be carried out. This sec-
ond identification step can be easily done, for ex-
ample, by least mean squares (Babuska, 1996) if the
system is linear in parameters or by gradient or genetic
techniques in other cases (Wang, 1997).

Somerule extractiontasks can be given or provided by
an expert but, in general, the more tasks to perform in
structure identification, the more difficult the identifi-
cation becomes. There exist a number of methods for
solving rule extraction problem (Wang, 1997) based
on genetic algorithms, neural networks, templates or
clustering techniques. In this paper, emphasis will be
made on control-oriented rule extraction usingfuzzy
clustering (Sugeno and Yasukawa, 1993; Emamiet
al., 1998; Babuska, 1996). The objective of clustering
is to partition a data set into a reduced number of
clusters. Results are given by assigning a membership
function value for each cluster to each data point.
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The structure of the contribution is as follows. An
identification approach for fuzzy identification for lo-
cal models control is chosen in section 2, after high-
lighting some misunderstandings in literature. Section
3 analyzes fuzzy clustering for local-models identifi-
cation, providing the main characteristics this cluster-
ing algorithm should have in control context. Local
model control oriented fuzzy clustering algorithms
are shown in section 4 and a more suitable family
of clustering algorithms is presented in section 5. Its
capabilities are tested in two identification examples
in section 6.

2. MODELLING CRITERIA FOR
LOCAL-MODEL CONTROL

Let us have a nonlinear discrete-time dynamic system:

xk+1 = F(xk;uk)+e(k) (1)

whereF arguments are measurable ande(k) repre-
sents noise and unmodelled dynamics.

The general system (1) has a formY = F(z) + e(t),
where z aggregates state and input variables, e(t) is a
noise term and Y is the predicted value (usuallyxk+1).
In the spirit of fuzzy models, a state representation
with physical sensewould be preferred instead of a
collection of past input-output values.

An approximation function f() to the real system,
is an approximation ofF() calculated by identifica-
tion techniques from a set ofn-dimensional input-
output data withN elementsZ = fwk = (zk;yk); k=
1; : : :Ng.

Two different concepts (steps) appear when using
fuzzy models asf (): locality (to divide the complexity
of the system into a set of local behaviours) andinter-
polation(integration of these local models). The ideas
of modelling for control have recently arisen in the
linear system field (?), and those approaches should
be extended to fuzzy identification techniques because
the use of fuzzy models to design control systems may
modify the criteria used in identification for predic-
tion. Two main fuzzy identification approaches can be
thought of. The first one consist of a minimization of
a “global” prediction error (difference between y(t)
and f(t)) (?). This global modelsapproach to mod-
elling complex systems presents an objective function
to minimize defined by:

Jg =
N

∑
k=1

(yk� f (zk))
2 (2)

where f (�) is any UFA, such as Takagi-Sugeno
(Takagi and Sugeno, 1985) fuzzy models, radial basis
networks, etc. Many of them can be expressed as

f (zk) =
c

∑
i=1

µi(zk) fi(zk;βi) (3)

wherec represents the number of regions in which
the operating space has been divided,βi are param-
eter vectors of “local” modelfi , andµi is a validity
(membership) function.

On the following, the dataµi(zk) will be arranged in an
arrayµik of dimensionsc�N and they will be forced
to verify the conditions for afuzzy partition:

µik 2 [0;1];
c

∑
i=1

(µik) = 1 (4)

Global objective function system identification has
the advantage of easy training of the model (iffi
functions are linear in parameters, least squares can
be used) and good accuracy. Regarding control design,
techniques such as LMI (Tanaka and Sugeno, 1992),
gain-scheduled control (Hunt and Johansen, 1997),
generalised minimum variance controllers networks
(Díez and Previdi, 2001), etc. can be used.

However, the widespread in literature (Hunt and Jo-
hansen, 1997) name of “local model” tofi in (3) may
have no particular meaning: the identifiedfi may not
correspond to any local behaviour,i.e., the global be-
haviour is explained by the convex aggregation of the
fi but its meaning is unrelated to local models (such
as linearized ones) or other distinctive characteristics
of the underlying system unless fuzzy set overlapping
is very small. Another issue on those models regards
conditioning when calculating membershipsµi and fi :
if sufficient freedom were available to theµi , they
would be able to approximate a global model for ar-
bitrarily fixed fi .

The alternate option for modelling complex systems is
to partition the operating regime space into a number
of sets (either used-defined or generated in the identi-
fication process), and minimize the “local” error of a
number oflocal modelsthat represent the system in
a region of its operating space (Babuska, 1996) and
approximate the plant behaviour on the given set. An
objective function to minimize in this case is:

Jl
i =

N

∑
k=1

µik(yk� fi(zk))
2
; i = 1; :::;c (5)

whereµik verify conditions (4). In this case,fi(zk) has
to be adjusted to the data, weighting the adjustment
proportionally to membership values. With narrow
membership functions, thefi minimizing the index
in (5) will truly approach the local models around
a set of prototype points(z�i ;y�i ) which µ�

ik = 1. To
get global models from (5), alternative convex inter-
polation must be used (Babuskaet al., 1996). The
main disadvantage of this kind of systems is that local
designs can not ensure global stability with identified
interpolation functionsµik, unless appropriate gain-
scheduling techniques (Rugh and Shamma, 2000) are
used for control design.

To summarize, theglobal approach (3) may achieve
better accuracy between real and estimated output of



the process, while thelocal one (5) improves read-
ability of the identified model. In identification with
AI techniques, this trade-off between readability and
accuracy must be taken into account, and the use of
the concepts (fuzzy sets) and the models originated
depends on which of the two approaches is taken. If
the objective is the application to local linear control
design or the models are designed for human interface,
user (control engineer) interpretability is fundamental
and local modelling criteria might be more suitable.

3. IDENTIFICATION OF FUZZY MODELS WITH
FUZZY CLUSTERING

As previuosly outlined, the objective of clustering is
to partition a finite data setZ = fz1;z2; :::;zNg into c
clusters, giving as a results ac�N matrixU = [µik].
To express those results as fuzzy rules, antecedent
calculations must be done. The easiest solution is to
project the obtained membership functions to one-
dimensional clusters and adjust the shape to a proper
predefined membership function. Another option is
to keep the obtained membership function in then-
dimensional data space. In any case, the lower the
modelling error usually leads to a lower degree of
rule interpretability. This section reviews the most
common fuzzy clustering methodologies.

3.1 Fixed distance algorithms

Fuzzy C-Means (FCM) is the mainly used algorithm
in this class. Thesedistance-basedalgorithms mini-
mize ac-meansobjective function (Bezdek, 1987) or
any of its modifications. The FCM functional is usally
formulated as:

J(Z;U;C) =
c

∑
i=1

N

∑
k=1

(µik)
mD2

ik (6)

whereC= [c1;c2; :::;cc], ci 2Rn are the cluster centers
(prototypes) to be determined,

D2
ik = (wk�ci)

TB(wk�ci) (7)

is a distance (norm) defined by B, andm 2 (1;∞)
determines the fuzziness of the resulting clusters.

Minimization of (6) is usually carried out in two
independent steps:

� minimize for U , with fixed C by constrained
minimization (must add one),

� minimize forC, with fixed U by unconstrained
minimization.

Combination of both conditions makes (6) descend
towards a (maybe local) minimum (Bezdek, 1987).
FCM drawbacks (all identified clusters have similar
size and orientation, with hyperellipsoid shape) can be
avoided by using extensions to the algorithm, such as
those presented in next sections, to make its results
better suited to control-relevant problems.

3.2 Adaptive distance algorithms

The Gustafson-Kessel (GK) algorithm (Gustafson and
Kessel, 1979) is the FCM extension most used in
identification, and allows a different normBi for each
cluster:

D2
ikBi

= (wk�ci)
TBi(wk�ci) (8)

The procedure adds a third minimization step forBi
with constantU , C under the constraint of constant
cluster volume (det(Bi) = ρi , being ρi user-defined
parameters).

GK algorithm detects quasi-linear behaviours of ex-
isting operating regimes quite correctly. However, the
hyperellipsoidal clusters have to be adjusted to linear
structures eliminating the least significant eigenvalue
and eigenvector.

GK has interesting properties that make it an appro-
priate algorithm for identification (Babuska, 1996) but
in the usual case of lack of information about clus-
ters volumes, all initial values are the same and final
detected clusters cannot have very big differences in
size. Additionally, when only a small number of data
are available, noise free data are presented or when
data are linearly dependent, numeric problems could
appear because the cluster covariance matrix becomes
almost singular.

Finally, it must be emphasized that a common draw-
back of all methods for identification of fuzzy models
via clustering is that they forget their final goal (the
fuzzy model) while grouping data. Derivation of rules
is always a step to be done after clustering. Addition-
ally, in order to determine rule consequents, detected
clusters have to be adjusted to linear structures if a
TS fuzzy model is needed (for example, by least mean
squares). All these problems suggest some improve-
ments in clustering techniques:

� Include modelling error information in the itera-
tive clustering algorithm.

� Enhance rule interpretability, for example by
favouring convex cluster shapes.

The objective of this paper is to find a clustering
algorithm in which local linear models are obtained in
the clustering process and a balance criteria between
interpretability and modelling error can be done.

4. LOCAL MODEL CONTROL ORIENTED
FUZZY CLUSTERING ALGORITHMS

4.1 Linear prototypes algorithms

FCM limitation of shape and dimensions of the clus-
ters is solved in this case by keeping a constant norm
but defining r-dimensional prototypes(0 � r � N),



linear or non-linear, in the input data subspace of di-
mension N. Algorithms of our interest and based on
this approach are those referred to linear spaces: FCV
fuzzy c-varieties algorithm (Bezdek, 1987) and FCRM
fuzzy c-regression models algorithm (Hathaway and
Bezdek, 1993). The most interesting linear prototypes
algorithm, in our case, is FCRM, because objective
function to minimize is based on substitution ofDik
of (6) by Eik(βi) = (yk� fi(zk;βi))

2, and the resulting
index to minimize is the same presented in (5).

Although its philosophy is good (obtains local linear
models and includes modelling error in clustering pro-
cess), FCRM algorithm sometimes does not achieve
the desired objectives due to spurious local minima
originated by the excessive degrees of freedom in the
membership functions and local model parameters,
resulting in error minimized by different models pon-
deration instead of local model closeness to data.

4.2 Mixed prototypes algorithms

The problem of FCM limitation of cluster shape
and dimension can be handled in a third way apart
from variable norms and linear prototypes, by mix-
ing both approaches. These algorithms are fuzzy c-
elliptotypes (FCE) and adaptive fuzzy c-regression
models (AFCR).

AFCR is based on (?), where it is shown that ifD2
ik

in FCM is substituted by a convex combination of
distances in a generic criteriaDa ik, then a Û strict
local minimum of J can be calculated. AFCR objective
function (9) can be calculated byDik substitution in
equation (6) for a new distance (10) defined as a
combination of FCRM (Eik) and FCM (Dik) distances
with α 2 [0;1].

Ja ik =
c

∑
i=1

N

∑
k=1

(µik)
mDa ik (9)

Da ik = αkEik(βi)+(1�αk)ηD2
ik (10)

First term of (10) provides the same criterion as
FCRM and second term increases partition capability
in input space by taking into account data distance
from clusters prototypes.α selection is dynamically
determined by the algorithm and is as closer to 1 as
cluster structure becomes more linear. Calculation of
this parameter is based on:

αk = 1�
minlfλklg

maxlfλklg
; k= 1;2: : : ;c (11)

where λkl are eigenvalues of cluster k covariance
(used, for example, in GK). In this way, a single
algorithm includes advantages of FCRM and GK.
Parameterη is used for balance between criterion
terms when mean size is very different and there is no
studies about its determination. In general (AFCR and
GK), results are not very good if attention is focused

on membership functions, because interpretability is
lost in exchange of a lower modelling error.

5. AN ALGORITHM IMPROVING
READABILITY

In this paper, a modification of the objective function
of AFCR linear clustering algorithm including appro-
priate criteria in it forµ convexity assurance will be
presented, with improvements over original behaviour
towards a better performance and membership func-
tion interpretability. Of course those additions are at
the expense of a maybe higher modelling error if num-
ber of clusters is preserved.

Two new additional terms are going to be added to
performance index defined in equation (9): a first term
to penalise high membership of points far from a
prototype (Jf ar ik), and a second term to penalise low
membership of points near to a prototype (Jnear ik):

Jf ar ik =
c

∑
i=1

N

∑
k=1

µm
ik [1�exp(�

L2
ik

2σ2
1
)] (12)

Jnear ik=
c

∑
i=1

N

∑
k=1

(1�µik)
m[exp(�

L2
ik

2σ2
2
)] (13)

L2
ik = (zk� pi)

TB(zk� pi) (14)

where distanceLik and prototypespi are measured on
input space. In both cases, Gaussian decay functions
are used although other monotonic functions could be
though of. Then, minimisation of new performance
index:

JC ik = Ja ik+ γ1Jf ar ik + γ2Jnear ik (15)

leads to a solution biased towards smoother and more
convex membership function shapes.

Minimisation ofJC ik can be done following the origi-
nal FCM-AFCR procedures with modified update ex-
pressions for prototypes and memberships at each it-
eration step.

New parametersγ1 andγ2 are included inJf ar ik and
Jnear ik, respectively, with the purpose of balancing the
diverse cost index terms.

This new algorithm is calledAFCRC (Adaptive
Fuzzy C-Regression models with Convexity enhance-
ment). Obtained membership functions are more in-
terpretable and clusters are more similar to desired
general structure.

5.1 Parameters setting

The use of normalized data, so that all variables are
scaled to zero mean and unit variance, helps in pre-
serving parameters values for different sets of data.
However, to facilitate parameters tuning, its meanings
have to be clarified:



� σ1 represents approximate maximum allowed
cluster size,

� σ2 corresponds to approximate minimum cluster
size,

� η provides a balance between cluster size and
modelling error at startup,

� γ1 and γ2 weight the new index terms against
AFCR ones

As γ1 and γ2 represent relative importance of inter-
pretability versus modelling error at the final itera-
tion steps of the algorithm, determination of them
should be user supervised. A possible procedure is to
run AFCR algorithm to determine the lowest feasible
modelling error and increaseγ1 andγ2 until an afford-
able rise in modelling error is achieved (for example,
10%) enhancing interpretability. The noisier the data
the bigger those parameters should be for acceptable
membership functions shape.

6. CASE STUDIES

6.1 Nonlinear static function identification

Suggested clustering algorithms have been tested in
the identification from data of growth rate kinetics of
a simulated bioreactor. Results are shown in the fol-
lowing figures for GK (figure 1) and AFCRC (figure
2).

Fig. 1. GK detection of real data structure (circle:
experimental data, line: identified local model).

Results shown in the last figure overcomes other tested
approaches in the membership functions convexity
sense, while local linear models detection is main-
tained and its parameters are calculated in the clus-
tering process taking into account modelling error.

6.2 Nonlinear dynamic function identification

A simulator of a nonlinear dynamic system has been
built, based on the longitudinal vehicle dynamics pre-
sented in (Hunt and Johansen, 1997), in order to

Fig. 2. AFCRC detection of real data structure (circle:
experimental data, line: identified local model).

test AFCRC algorithm identification capabilities for
nonlinear dynamic systems. Simplified vehicle model
consists of a single control signal u combining throt-
tle angle and brake pressure, and vehicle longitudinal
speed y as model output.

The model consists of three operating regimes, each
corresponding to a certain range around an operating
point (u�;y�). Defined local models are presented in
table 1.

Table 1. Local models.

Regime Op. point Transfer function Offset

1 (0.1,3.5) 0:3z�1

1�0:98z�1 0.04

2 (0.5,15) 1:8z�1

1�0:94z�1 0.0

3 (0.9,26.5) 0:6z�1

1�0:96z�1 0.52

Relatively small variations in parameters between
two models makes operating mode separation harder
but improves subsequent switching between designed
controllers. The surface to identify corresponds to the
nonlinear discrete dynamic system, with trapezoidal
validity functions f1, f2 and f3, is (16):

yk+1 = f1(0:98yk+0:3uk+0:04)+

+ f2(0:94yk+1:8uk+0:0)+

+ f3(0:96yk+0:6uk+0:52)

(16)

AFCRC algorithm leads, following the performance
index evolution shown in figure 3, to identified local
models presented in table 2.

Table 2. AFCRC identified local models.

Regime Op. point Transfer function Offset

1 (0.1004,3.1084) 0:2583z�1

1�0:9852z�1 0.0291

2 (0.5035,14.7769) 1:7313z�1

1�0:9420z�1 0.0044

3 (0.9030,26.2319) 0:5473z�1

1�0:9647z�1 0.4436

AFCRC results are better than those obtained by GK
algorithm (convergence with GK required many runs



Fig. 3. Evolution of performance index in AFCRC
algortihm.

with different initilization parameters) and presented
for comparison in table 3.

Table 3. GK identified local models.

Regime Op. point Transfer function Offset

1 (0.0998,3.0824) 0:4402z�1

1�0:9739z�1 0.0433

2 (0.4993,14.6181) 2:4549z�1

1�0:9174z�1 0.0038

3 (0.8993,26.0735) 0:4781z�1

1�0:9623z�1 0.5723

7. CONCLUSIONS

In this paper, after defining proper criteria for fuzzy
identification, fuzzy clustering approaches for local-
model identification have been analysed, providing the
main characteristics a clustering algorithm for iden-
tifying local linearized fuzzy models should have in
the control context. A new family of fuzzy clustering
algorithms that overcomes some problems present in
current ones has been presented, enhancing the con-
vexity and smoothness (i.e., the readability) of the
obtained clusters.
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