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Abstract: The problem of simultaneous decoupling and pole placement without cancelling
invariant zeros is important, especially in the case of unstable invariant zeros. An experi-
mental model developed of a primary grinding circuit contains such zeros. The simultaneous
decoupling and pole—placement problem without cancelling the unstable invariant zeros of
the primary grinding circuit is approached by searching for solutions of the nonlinear system
of equations composed of the characteristic equation and the decoupling conditions using
ideas of anaBB global optimization approach. The simultaneous steady—state decoupling
and pole placement problem is then solved for the primary grinding circuit without cancelling
invariant zeros using an eigenvector based approach as well as the steady-state decoupling
condition.
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1. INTRODUCTION Dooren, 1982) of MIMO systems are, however, not
affected by state feedback or feedforward gain. In the
The decoupling problem has been of interest for many classical decoupling methods, the invariant zeros are
years, as one of the important methods in the control of in general cancelled by a number of the new system
multiple-input multiple-output (MIMO) systems. The  poles, thus, effectively leading to an overall reduced—
first methods essentially resulted in integrator decou- order system.
pling, i.e., the resulting diagonal elements were inte-
grators (Gilbert, 1969), (Furuta and Kamiyama, 1977). In many cases, such a decoupled overall reduced-
Those methods were later adapted to include pole—Crder system results in a first-order differential equa-
placement decoupling, wherein the diagonal elementstion relating the decoupled inputs to the individual
contained poles not necessarily at the origin, thus al- OUtPUts, thus, somewnhat limiting the dynamical re-
lowing a wider range of dynamical responses to be sponse achievable by_the pole placement. then, this
designed for, see, e.g., (Furetzal., 1988). does not pose a major problem, as the first—order
response can be shaped by an outer—loop controller,
Essentially, a feedforward gain matrix and state feed- e.g., a PID controller, once the system is decoup|ed_
back are used in a state space representation to achievghe fact that the classical decoupling methods cancel
the desired result in the classical decoupling meth- aj| invariant zeros is a much more serious drawback,
ods. In general, state feedback can be used to placess in the case of unstable invariant zeros, those are

poles as well as to affect the element zeros of transfercancelled by unstable controller poles, thus rendering
function matrices in MIMO systems. The invariant such a controller useless in practice_

zeros (Schrader and Sain, 1989), (Emami-Naeini and ) )
It is therefore of interest to explore the design of a de-

coupling pole—placement controller, that leaves invari-
1 This work was supported by the Research Fund of the University ant zeros intact and allows full pole placement. This

8{);‘1‘;‘8?’ the Icelandic Science Fund and NSF grant no. INT- j5 accomplished in the Faddev algorithm in (Gestsson




and Hauksdéttir, 1995), by imposing the decoupling

as well as pole—placement conditions iteratively, eas-

ily applicable to low—order systems. The simultane-

ous decoupling and pole placement problem is ap-

proached in (Hauksdottir and lerapetritou, 2001), by
finding all solutions of the nonlinear system of equa-

where

a(s) =det(sl —Ay)
="+, oS+ an
=(S+A)(s+A,) - (s+An)

(®)

tions composed of the characteristic equation and thedenotes the system’s desired characteristic equation.

decoupling conditions using the ideas of th@&B

global optimization approach proposed by Maranas

and Floudas (Maranas and Floudas, 1995).

In this paper, the simultaneous decoupling and pole—
placement conditions are presented in Section 2. An

experimental model developed of a primary grinding
circuit (Jamséet al., 1983) containing unstable in-

variant zeros is described in Section 3. The simulta-
neous decoupling and pole—placement problem with-

out cancelling the unstable invariant zeros of the pri-
mary grinding circuit is approached in Section 4 by
searching for all solutions of the nonlinear system of

equations composed of the characteristic equation and

the decoupling conditions using the ideas of tH&B
global optimization approach. Expanding the results
of (Lohmann, 2000) for the cade # 0, the simul-

taneous steady—state decoupling and pole—placement

problem is then solved in Section 5 for the primary
grinding circuit by finding the state—feedback using

an eigenvector based approach without cancelling in-

The invariant zeros of a square system are given by

det(CAdj(sl —A)B+ Da(s)) =0, (6)
wherea(s) is the original systems characteristic equa-
tion. Such invariant zeros are neither affected by feed-
back or feedforward gains, i.e.,

det(CAdj(sl - AB+Da(9) = | ¥ M B ‘
ssi—-A—BF B
=| —c-DF D ‘ ™
=det((C+DF)Adj(sl —A,)B+Da(s))
Further,
det(((C+DF)Adj(sl — Ay)B+Da(s))E)
= det((C+DF)Adj(sl —A,)B+Da(s)) detE (8)

variant zeros, and using the steady—state decouplingExpanding the adjoint in the numerator part of the

condition for finding the static feedforward matrix.

Conclusions and future studies are discussed in Sec-

tion 6.

2. SIMULTANEOUS DECOUPLING AND
POLE-PLACEMENT CONDITIONS

Consider a square system in a minimal form

X = Ax+ Bu

y =Cx+Du (1)

whereAe ™N Be ™M Ce ™NandD €
mxm Feedforward and feedback of the form

u=Fx+Ev (2)

will be applied to decouple the system and to place it’s
poles. The resulting system is then,

X = [A+BF]x+BEv
= Ayx+BEv
y = [C+DF]x+ DEv.

®3)

The closed—loop transfer function matrix (TFM) is
given by

Gy(s) = (C+DF)(sl —Ay) 'BE+DE

(1 C+DF)Adj(s —A)BE+DE @)

a(s)

closed-loop TFM results in

(C+DF)Adj(sl —A,)BE +DEa(s)

=¢'DE + s }((C+ DF)BE + a, DE)
+8"%((C+ DF)A BE + a, (C+ DF)BE + a,DE)
+...+(C+DF)AY'BE +a, (C + DF)AY ?BE
+...+a, ,(C+DF)BE+ anDE.

9)

Thus, the conditions for decoupling are

DE =diag{y{,)5,...,\2}

(10)

and

(C+ DF)AlYBE = diag {y'f L yr‘;} (11)

fork=1,...,n. It was furthermore shown, that the so-
lution of the simultaneous decoupling pole—placement
problem for the cas® = 0 in (Hauksdottir and ler-
apetritou, 2001) leads to the standard solution wherein
all invariant zeros are cancelled if and only if

W= (a0

fork=1,2,...,nandi = 1,2,...,m, whereA; arem
of the closed-loop eigenvalues.

(12)

The simultaneous decoupling and pole—placement
problem can now be stated as follows: Simultaneously
solve

a(s) =det(sl —Ay)

" 13
="+ a7+, S+ an, (13)



D.E. =0 (14)

]

and . WATER )
’ 0 |ﬁ
(C+DF), Al YBE ;=0 (15) ﬁ;x L[]

BIN F@_ g
fork=1,...,nand fori # j. o |
As invariant zeros are not affected by feedforward or
feedback, they will appear in the numerator of the
diagonal elements of a decoupled system. Further, it is
obvious that if some invariant zeros are to be retained,
they must not be a factor of(s), as the factors afi (s)

|| g fT :
appear in the denominator of the different diagonal Q@‘ @J

Tl
elements of a decoupled system. -0 ®

3. MODELING OF THE PRIMARY GRINDING L
CIRCUIT

The primary grinding stage in the Vuonos concentrator rig. 1. A flowsheet of the Vuonos grinding circuit.
comprises a rod mill and a pebble mill with a hy-

drocyclone classifier (Jams#al., 1983). The instru-  has a very strong effect on both outputs, i.e., both the
mentation of the grinding circuit is shown in Fig. 1. cyclone overflow particle size and the cyclone feed
The crushed ore feed to the rod mill is measured by a density. On the other harld, (the water feed to the
belt-weigher and controlled by a belt-feeder. The pulp cyclone pump sump) has a minimal effect on both
density in the rod mill is stabilized by proportioning outputs. Therefore the transfer functions frolp are

the waterfeed at the mill inlet to the crushed ore feed. simplified such that they both have the average delay
The slurry level in the pump sump is measured by of 1.4min. Further, the transfer function frob, to'Y;

a pressure transducer and controlled by changing theis represented as a first—order transfer function, i.e.,
speed of the direct—current drive pump. The electric as s
powerdraw of the pebble mill is regulated to a certain —2e 0.004e

setpoint by controlling the pebble feed to the mill. G(s) = f(s)et&s _8‘%;3%.45 . @7
The densities of the cyclone feed and overflow are ‘

measured by radioisotope density gauges and the flow 5s+1 s+1

rates by electromagnetic flow—meters. The operation

of the cyclone is also checked by measuring the pres-APProximating the delay ofr seconds with a first—
sure of the cyclone feed and the massflow of the cy- order Taylor series

clone underflow. The particle size of the product of the

grinding circuit is measured by an ultrasonic particle ¢ =1-as (18)
size meter located at the cyclone overflow.

. ) ., results in
A dynamic process model was developed with the aid
of step responses. According to the present control 2666752125 ggqg5 07143
strategy the process inputs are the crushed ore feed G(s) = SHPS87 e8| (19)
(U,(s)) and the water feed to the cyclone pump sump 5102 i1

(U,(s)) and the process outputs are the cyclone over-
flow particle size Y;(s)) and the cyclone feed density  Arranging these in a minimal state space form of Eq.
(Yz(s)). The transfer function matrix of the process is (1) gives: where
given by (Jamsét al., 1983):
—0.1667 O 0 0

Y(s) =G(s)U(s) (16) 0 —0.2 0 0
A=l o o0 —03226 0 |» O
or 0 0 0 -10
—2¢785 0.004(24.5s+ 1) 187
Yi(s) | _ | Es+1 (31s+1)2 Uy (s) 08819 O
Y, () 10e~8 —0.15709% Uy(s) | 22804 0
5s+1 s+1 B= 0 0.04331| (21)
Here all time constants are given in minutes. 0 06
As seen from the model strong interactions exist in C— -08819 0 00433 O 22)

the process, in particuldd, (the crushed ore feed) 0 22804 0 -06



and Step Response

D _ |: 2.6667 _0.0018} From: U(1) From: U(2)

160 021 (23) 1

05

This system has invariant zeros at D43, —0.2222,
—0.2653 and (1250 i.e., two unstable ones both due
to the input time delays. Assuming the new eigenval- 05
ues are selected as0.7143,—0.2222,—0.2653 and
—0.1250, i.e, as the stable invariant zeros which will
then be cancelled in the decoupled system and the res
as the negative of the unstable invariant zeros, gives 08
the new characteristic equation

To: Y(1)
o

Amplitude

@06

a(s) = det(sl —A,) = det(sl — A—BF) e
— s*+1.3268%+ 0.5574+ 0.093G:+ 0.0053 (24) y
=0.

Time (sec.)

4. SIMULTANEOUS DECOUPLING AND POLE
PLACEMENT FOR GRINDING CIRCUIT
CONTROL

Fig. 2. A step response of the resulting lower diagonal
decoupled system with simplified input delays.

0.0909 —-0.0223 —0.0072 Q0035

F =1 157465 50123 06138 05105|°

The primary aim of the controller design is to make (27)

the two control loops as independent as possible. This

means that changes in the setpoint of the particle sizeregyting in the corresponding step response shown in
(Y,(s)) do not cause strong effects on the density of the Fig 3.

cyclone feed Y,(s)) and vice versa. Grinding circuit

control has been studied e.g. in (Janesal., 1983) Step Response

and (Niemiet al., 1997). From: Ul [

Assuming an observer has been build for the necessary
state estimates and applying state feedback and feed 0
forward for full decoupling, the off-diagonal elements
of the Markow parameters must be zero, i.e.,

To: Y(1)
o

D,E, =0 )
D,E, =0
(C+DF), (A+BF)BE, = 0 (25)
(C+DF), (A+BF)BE, = 0
fork=0,...,3

Amplitude

To: Y(2)

UsingE = (D)~ and deriving the characteristic equa-
tion coefficients as functions of tHe-matrix, results

in a total of three linear and nine nonlinear equations
to be solved simultaneously for the element$- of

TR A R T S R
b 4 b H A b e e
o

Time (sec.)
No solutions to the above system of equations were
found using an algorithm based on the ideas of an Fig. 3. A step response of the resulting steady-state
aBB global optimization approach. One solution, decoupled system with simplified input delays.
however, was obtained, resulting in close to lower
diagonal decoupling and appropriate pole locations,

with F given by 5. SIMULTANEOUS STEADY-STATE
DECOUPLING AND POLE PLACEMENT FOR

—0.0411 (03663 00030 —0.0451
(26) GRINDING CIRCUIT CONTROL

F= —2.8597 153960 02218 —0.5768 ’

In cases where full decoupling and pole placement
is not achievable without the cancellation of invari-
Another solution was obtained, resulting in close to ant zeros, steady—state decoupling and pole placement
steady—state decoupling and appropriate pole loca-without cancellation of invariant zeros may be pos-
tions, withF given by sible. In fact, both solutions obtained by the global

and the corresponding step response shown in Fig. 2.



optimization approach for the grinding circuit control, invariant zeros problem, two of them which are re-

were close to such steady—state decoupling. ported here. The first one essentially corresponds to
complete lower diagonal decoupling (a special case
of steady—state decoupling) maintaining all invariant

zeros and is given by

Consider again the closed—loop system of Eq. (3). In
the pole—placement problem, the closed-loop eigen-
vectorsr; are given by
—0.0220 02525 00018 —0.0369
(A=Al +BF)r; =0 (28) F= [—2.5241 126163 02077 —0.3780} (38)

or with slight abuse of notation and

(A—Al+BF)R=0 (29) £ _ [ 0.2632 —0.1238 39
~ 1301934 -7.0287| " (39)
whereR contains the closed—loop eigenvectoysas
columns. Then, in order to cancel invariant zeros, The corresponding step response is given in Fig. 4.
the obtained eigenvectors must be orthogonal to the
Step Response

closed-loop output matrix, i.e., From: Uy Fom:UQ)

(C+DF)R=0. (30)

Likewise, in order to avoid cancellation of invariant =
zeros, the obtained eigenvectors must not be orthogo-
nal to the closed—loop output matrix, i.e.,

(C+DF)R=[I 0]. (31)

——

Amplitude

Then, one may express both of the above combined as

0.8

A—Al B R 00
R R I I
or )
A-AIB][w,] 00O
|: C D:| |:Lp| :| B |:| O:| : (33) UU 10 20 30 40 . (0) 10 20 30 40
Then, by solving the combined eigenvectorproblem, Fig. 4. A step response of the resulting lower diagonal
subsequentlfF can be solved for by decoupled system.
F=WR'=yy,L (34)

The second solution is complete steady-state decou-
M pling, again maintaining all invariant zeros and is

Finally, E is solved for such that the steady state TF given by

is the identity matrix, i.e.,
.0357 00242 —0.
E — ((C+DF)(—A—BF)~'B+D)~%, (35) E_ { 0.0357 Q0 0.0093 00006

2546 863 —0.360 0543] (40)

thus, assuring steady—state decoupling. A result for and
the caseD = 0 was derived along similar lines in
(Lohmann, 2000). E_ {—0.347 —0.0158} ‘

1990 —4.530 (41)

Returning back to the grinding problem, but this time
without simplifying the input delays, i.e., applying the

. . Th rr ndin r nse is given in Fig. 5.
Taylor series expansion on the delays of the model e corresponding step response is give g-5

Y(s) =G(s)U(s (36)
© S 6. CONCLUSIONS AND FUTURE STUDIES
or
o . It is known that the general problem of decoupling
—2e ™ 0004 7" and pole placement without cancelling the invariants
{ms) _ | Btz 3isel Uﬂs)] (37)

106&5 _0.150-003s zeros can be solved for some examples, while in other
Bs+1  s+1 cases no solution exists. In this paper, it was attempted
to solve this problem for an experimental model de-
Several solutions were found to the steady—state de-veloped of a primary grinding circuit containing two
coupling and pole placement without cancellation of unstable invariant zeros due to input time delays, by

N
=
«u



StepResporse Gestsson, A. and A.S. Hauksdottir (1995). Simulta-
5 i e neous decoupling and eigenvalue assignment. In:
Proceedings of the American Control Confer-
ence. pp. 4418-4421. Seattle, Washington.
05 Gilbert, E.G. (1969). The decoupling of multivariable
systems by state feedba&AM Journal on Con-
trol 7(1), 50-63.
05 Hauksdottir, A.S. and M. lerapetritou (2001). Simul-
taneous decoupling and pole placement without
1 cancelling invariant zeros. IfProceedings of the
American Control Conference. pp. 1675-1680.
Arlington, VA.
Jamsa, S.-L., H. Melama and J. Penttinen (1983). De-
sign and experimental evaluation of a multivari-
2 able grinding circuit control system. IRroceed-
ings IFAC Automation in Mining, Mineral and
Metal Processing. Helsinki, Finland.
oo m e e Lohmann, B. (2000)Complete and partial decou-
pling by constant state feedback. Institut fur Au-

Fig. 5. A step response of the resulting steady—state tomatisierungstechnik, Universitat Bremen, Ger-

To: Y(1)

Amplitude

decoupled system. many.

Maranas, C.D. and C.A. Floudas (1995). Finding

placing the system poles such as to cancel stable in-  al| solutions of nonlinearly constrained systems
variant zeros, but leaving unstable invariant zeros in of equations.Journal of Global Optimization

tact. This was done by searching for all solutions of 7(2), 143-182.

the nonlinear system of equations composed of the Njemi, A.J., L. Tian and R. Ylinen (1997). Model
characteristic equation and the decoupling conditions predictive control for grinding system&ontrol

based on the ideas of the global optimization algo- Engineering Practice 5(2), 271-278.

rithm proposed by Maranas and Floudas (Maranas andschrader, C.B. and M.K. Sain (1989). Research on
FIOUdaS, 1995) No solutions were found to the com- system zeros: A Survemternationa] Journal on
plete problem, however, solutions were found for the Control 50, 1407-1433.

close to lower diagonal decoupling problem as well as
the steady—state decoupling problem.

Expanding the results of (Lohmann, 2000) for the case
D # 0, the simultaneous steady—state decoupling and
pole—placement problem was solved for the primary
grinding circuit by finding the state—feedback using
an eigenvector based approach without cancelling in-
variant zeros, and using the steady—state decoupling
condition for finding the static feedforward matrix.

It is of interest to consider other related MIMO prob-
lems, such as more general eigenstructure placement
problems. It is of particular interest to explore the
solution of such control problems using the global
optimization approach developed in (Hauksdéttir and
lerapetritou, 2001).
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