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Abstract: The problem of simultaneous decoupling and pole placement without cancelling
invariant zeros is important, especially in the case of unstable invariant zeros. An experi-
mental model developed of a primary grinding circuit contains such zeros. The simultaneous
decoupling and pole–placement problem without cancelling the unstable invariant zeros of
the primary grinding circuit is approached by searching for solutions of the nonlinear system
of equations composed of the characteristic equation and the decoupling conditions using
ideas of anαBB global optimization approach. The simultaneous steady–state decoupling
and pole placement problem is then solved for the primary grinding circuit without cancelling
invariant zeros using an eigenvector based approach as well as the steady–state decoupling
condition.
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1. INTRODUCTION

The decoupling problem has been of interest for many
years, as one of the important methods in the control of
multiple-input multiple-output (MIMO) systems. The
first methods essentially resulted in integrator decou-
pling, i.e., the resulting diagonal elements were inte-
grators (Gilbert, 1969), (Furuta and Kamiyama, 1977).
Those methods were later adapted to include pole–
placement decoupling, wherein the diagonal elements
contained poles not necessarily at the origin, thus al-
lowing a wider range of dynamical responses to be
designed for, see, e.g., (Furutaet al., 1988).

Essentially, a feedforward gain matrix and state feed-
back are used in a state space representation to achieve
the desired result in the classical decoupling meth-
ods. In general, state feedback can be used to place
poles as well as to affect the element zeros of transfer
function matrices in MIMO systems. The invariant
zeros (Schrader and Sain, 1989), (Emami-Naeini and
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Dooren, 1982) of MIMO systems are, however, not
affected by state feedback or feedforward gain. In the
classical decoupling methods, the invariant zeros are
in general cancelled by a number of the new system
poles, thus, effectively leading to an overall reduced–
order system.

In many cases, such a decoupled overall reduced–
order system results in a first–order differential equa-
tion relating the decoupled inputs to the individual
outputs, thus, somewhat limiting the dynamical re-
sponse achievable by the pole placement. Often, this
does not pose a major problem, as the first–order
response can be shaped by an outer–loop controller,
e.g., a PID controller, once the system is decoupled.
The fact that the classical decoupling methods cancel
all invariant zeros is a much more serious drawback,
as in the case of unstable invariant zeros, those are
cancelled by unstable controller poles, thus rendering
such a controller useless in practice.

It is therefore of interest to explore the design of a de-
coupling pole–placement controller, that leaves invari-
ant zeros intact and allows full pole placement. This
is accomplished in the Faddev algorithm in (Gestsson
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and Hauksdóttir, 1995), by imposing the decoupling
as well as pole–placement conditions iteratively, eas-
ily applicable to low–order systems. The simultane-
ous decoupling and pole placement problem is ap-
proached in (Hauksdóttir and Ierapetritou, 2001), by
finding all solutions of the nonlinear system of equa-
tions composed of the characteristic equation and the
decoupling conditions using the ideas of theαBB
global optimization approach proposed by Maranas
and Floudas (Maranas and Floudas, 1995).

In this paper, the simultaneous decoupling and pole–
placement conditions are presented in Section 2. An
experimental model developed of a primary grinding
circuit (Jämsäet al., 1983) containing unstable in-
variant zeros is described in Section 3. The simulta-
neous decoupling and pole–placement problem with-
out cancelling the unstable invariant zeros of the pri-
mary grinding circuit is approached in Section 4 by
searching for all solutions of the nonlinear system of
equations composed of the characteristic equation and
the decoupling conditions using the ideas of theαBB
global optimization approach. Expanding the results
of (Lohmann, 2000) for the caseD �� 0, the simul-
taneous steady–state decoupling and pole–placement
problem is then solved in Section 5 for the primary
grinding circuit by finding the state–feedback using
an eigenvector based approach without cancelling in-
variant zeros, and using the steady–state decoupling
condition for finding the static feedforward matrix.
Conclusions and future studies are discussed in Sec-
tion 6.

2. SIMULTANEOUS DECOUPLING AND
POLE–PLACEMENT CONDITIONS

Consider a square system in a minimal form

ẋ � Ax�Bu
y �Cx�Du

(1)

where A � n�n, B � n�m, C � m�n and D �
m�m. Feedforward and feedback of the form

u � Fx�Ev (2)

will be applied to decouple the system and to place it’s
poles. The resulting system is then,

ẋ � �A�BF�x�BEv
� Aclx�BEv

y � �C�DF�x�DEv�
(3)

The closed–loop transfer function matrix (TFM) is
given by

Gcl�s� � �C�DF��sI�Acl�
�1BE �DE

�
1

α �s�
�C�DF�Ad j�sI�Acl�BE �DE

(4)

where

α �s� � det�sI�Acl�

� sn �α1sn�1� � � ��αn�1s�αn

� �s�λ1��s�λ2� � � � �s�λn�
(5)

denotes the system’s desired characteristic equation.

The invariant zeros of a square system are given by

det�CAd j�sI�A�B�Da�s�� � 0� (6)

wherea�s� is the original systems characteristic equa-
tion. Such invariant zeros are neither affected by feed-
back or feedforward gains, i.e.,

det�CAd j�sI�A�B�Da�s�� �

���� sI�A B
�C D

����
�

���� sI�A�BF B
�C�DF D

����
� det

�
�C�DF�Ad j�sI�Acl�B�Dα �s�

�
� 0�

(7)

Further,

det
�
��C�DF�Ad j�sI�Acl�B�Dα �s��E

�

� det
�
�C�DF�Ad j�sI�Acl�B�Dα �s�

�
detE

� 0�

(8)

Expanding the adjoint in the numerator part of the
closed-loop TFM results in

�C�DF�Ad j�sI�Acl�BE�DEα �s�
� snDE � sn�1��C�DF�BE�α1DE�
�sn�2��C�DF�AclBE�α1�C�DF�BE�α2DE�
� � � ���C�DF�An�1

cl BE�α1�C�DF�An�2
cl BE

� � � ��αn�1�C�DF�BE�αnDE�

(9)

Thus, the conditions for decoupling are

DE � diag
�

γ0
1 �γ0

2 � � � � �γ0
m

�
(10)

and

�C�DF�A�k�1�
cl

BE � diag
�

γk
1�γk

2� � � � �γk
m

�
(11)

for k � 1� � � � �n. It was furthermore shown, that the so-
lution of the simultaneous decoupling pole–placement
problem for the caseD � 0 in (Hauksdóttir and Ier-
apetritou, 2001) leads to the standard solution wherein
all invariant zeros are cancelled if and only if

γk
i � ��λi�

�k�1� (12)

for k � 1�2� � � � �n andi � 1�2� � � � �m, whereλ i arem
of the closed–loop eigenvalues.

The simultaneous decoupling and pole–placement
problem can now be stated as follows: Simultaneously
solve

α �s� � det�sI�Acl�

� sn �α1sn�1� � � ��αn�1s�αn�

(13)



Di�E� j � 0 (14)

and

�C�DF�i�A
�k�1�
cl

BE
� j � 0 (15)

for k � 1� � � � �n and fori �� j.

As invariant zeros are not affected by feedforward or
feedback, they will appear in the numerator of the
diagonal elements of a decoupled system. Further, it is
obvious that if some invariant zeros are to be retained,
they must not be a factor ofα �s�, as the factors ofα �s�
appear in the denominator of the different diagonal
elements of a decoupled system.

3. MODELING OF THE PRIMARY GRINDING
CIRCUIT

The primary grinding stage in the Vuonos concentrator
comprises a rod mill and a pebble mill with a hy-
drocyclone classifier (Jämsäet al., 1983). The instru-
mentation of the grinding circuit is shown in Fig. 1.
The crushed ore feed to the rod mill is measured by a
belt-weigher and controlled by a belt-feeder. The pulp
density in the rod mill is stabilized by proportioning
the waterfeed at the mill inlet to the crushed ore feed.
The slurry level in the pump sump is measured by
a pressure transducer and controlled by changing the
speed of the direct–current drive pump. The electric
powerdraw of the pebble mill is regulated to a certain
setpoint by controlling the pebble feed to the mill.
The densities of the cyclone feed and overflow are
measured by radioisotope density gauges and the flow
rates by electromagnetic flow–meters. The operation
of the cyclone is also checked by measuring the pres-
sure of the cyclone feed and the massflow of the cy-
clone underflow. The particle size of the product of the
grinding circuit is measured by an ultrasonic particle
size meter located at the cyclone overflow.

A dynamic process model was developed with the aid
of step responses. According to the present control
strategy the process inputs are the crushed ore feed
(U1�s�) and the water feed to the cyclone pump sump
(U2�s�) and the process outputs are the cyclone over-
flow particle size (Y1�s�) and the cyclone feed density
(Y2�s�). The transfer function matrix of the process is
given by (Jämsäet al., 1983):

Y �s� � G�s�U�s� (16)

or

�
Y1�s�
Y2�s�

	
�



�
�2e�8s

6s�1
0�004�24�5s�1�e�1�87s

�3�1s�1�2

10e�8s

5s�1
�0�15e�0�93s

s�1

�
�U1�s�

U2�s�

	
�

Here all time constants are given in minutes.

As seen from the model strong interactions exist in
the process, in particularU1 (the crushed ore feed)

Fig. 1. A flowsheet of the Vuonos grinding circuit.

has a very strong effect on both outputs, i.e., both the
cyclone overflow particle size and the cyclone feed
density. On the other handU2 (the water feed to the
cyclone pump sump) has a minimal effect on both
outputs. Therefore the transfer functions fromU2 are
simplified such that they both have the average delay
of 1�4min. Further, the transfer function fromU2 to Y1
is represented as a first–order transfer function, i.e.,

G�s� �



��
�2e�8s

6s�1
0�004e�1�4s

3�1s�1
10e�8s

5s�1
�0�15e�1�4s

s�1

�
� � (17)

Approximating the delay ofα seconds with a first–
order Taylor series

e��α s� � 1�α s (18)

results in

G�s� �



� 2�6667

s�0�125
s�0�1667

�0�0018
s�0�7143
s�0�3226

�16
s�0�125
s�0�2

0�21
s�0�7143

s�1

�


� (19)

Arranging these in a minimal state space form of Eq.
(1) gives: where

A �



���
�0�1667 0 0 0

0 �0�2 0 0
0 0 �0�3226 0
0 0 0 �1�0

�
�� � (20)

B �



���

0�8819 0
2�2804 0

0 0�0433
0 0�6

�
�� � (21)

C �

�
�0�8819 0 0�0433 0

0 2�2804 0 �0�6

	
(22)



and

D �

�
2�6667�0�0018
�16�0 0�21

	
� (23)

This system has invariant zeros at 0�7143,�0�2222,
�0�2653 and 0�1250 i.e., two unstable ones both due
to the input time delays. Assuming the new eigenval-
ues are selected as�0�7143,�0�2222,�0�2653 and
�0�1250, i.e, as the stable invariant zeros which will
then be cancelled in the decoupled system and the rest
as the negative of the unstable invariant zeros, gives
the new characteristic equation

α �s� � det�sI�Acl� � det�sI�A�BF�
� s4�1�3268s3�0�5574s�0�0930s�0�0053
� 0�

(24)

4. SIMULTANEOUS DECOUPLING AND POLE
PLACEMENT FOR GRINDING CIRCUIT

CONTROL

The primary aim of the controller design is to make
the two control loops as independent as possible. This
means that changes in the setpoint of the particle size
(Y1�s�) do not cause strong effects on the density of the
cyclone feed (Y2�s�) and vice versa. Grinding circuit
control has been studied e.g. in (Jämsäet al., 1983)
and (Niemiet al., 1997).

Assuming an observer has been build for the necessary
state estimates and applying state feedback and feed-
forward for full decoupling, the off-diagonal elements
of the Markow parameters must be zero, i.e.,

D1�E�2 � 0
D2�E�1 � 0

�C�DF�1��A�BF�kBE
�2 � 0

�C�DF�2��A�BF�kBE
�1 � 0

for k � 0� � � � �3

(25)

UsingE � �D��1 and deriving the characteristic equa-
tion coefficients as functions of theF-matrix, results
in a total of three linear and nine nonlinear equations
to be solved simultaneously for the elements ofF .

No solutions to the above system of equations were
found using an algorithm based on the ideas of an
αBB global optimization approach. One solution,
however, was obtained, resulting in close to lower
diagonal decoupling and appropriate pole locations,
with F given by

F �

�
�0�0411 0�3663 0�0030 �0�0451
�2�8597 15�3960 0�2218 �0�5768

	
� (26)

and the corresponding step response shown in Fig. 2.

Another solution was obtained, resulting in close to
steady–state decoupling and appropriate pole loca-
tions, withF given by
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Fig. 2. A step response of the resulting lower diagonal
decoupled system with simplified input delays.

F �

�
0�0909 �0�0223 �0�0072 0�0035
�12�7465 5�0123 0�6138 0�5105

	
� (27)

resulting in the corresponding step response shown in
Fig. 3.
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Fig. 3. A step response of the resulting steady–state
decoupled system with simplified input delays.

5. SIMULTANEOUS STEADY–STATE
DECOUPLING AND POLE PLACEMENT FOR

GRINDING CIRCUIT CONTROL

In cases where full decoupling and pole placement
is not achievable without the cancellation of invari-
ant zeros, steady–state decoupling and pole placement
without cancellation of invariant zeros may be pos-
sible. In fact, both solutions obtained by the global



optimization approach for the grinding circuit control,
were close to such steady–state decoupling.

Consider again the closed–loop system of Eq. (3). In
the pole–placement problem, the closed–loop eigen-
vectorsri are given by

�A�λiI �BF�ri � 0 (28)

or with slight abuse of notation

�A�λ I�BF�R � 0 (29)

whereR contains the closed–loop eigenvectorsr i as
columns. Then, in order to cancel invariant zeros,
the obtained eigenvectors must be orthogonal to the
closed–loop output matrix, i.e.,

�C�DF�R � 0� (30)

Likewise, in order to avoid cancellation of invariant
zeros, the obtained eigenvectors must not be orthogo-
nal to the closed–loop output matrix, i.e.,

�C�DF�R � � I 0 �� (31)

Then, one may express both of the above combined as�
A�λ I B

C D

	�
R

FR

	
�

�
0 0
I 0

	
(32)

or �
A�λ I B

C D

	�
Ψu

Ψl

	
�

�
0 0
I 0

	
� (33)

Then, by solving the combined eigenvectorproblem,
subsequentlyF can be solved for by

F � ΨlR
�1 � ΨlΨ

�1
u � (34)

Finally, E is solved for such that the steady state TFM
is the identity matrix, i.e.,

E � ��C�DF���A�BF��1B�D��1
� (35)

thus, assuring steady–state decoupling. A result for
the caseD � 0 was derived along similar lines in
(Lohmann, 2000).

Returning back to the grinding problem, but this time
without simplifying the input delays, i.e., applying the
Taylor series expansion on the delays of the model

Y �s� � G�s�U�s� (36)

or

�
Y1�s�
Y2�s�

	
�



� �2e�8s

6s�1
0�004e�1�87s

3�1s�1
10e�8s

5s�1
�0�15e�0�93s

s�1

�
�U1�s�

U2�s�

	
� (37)

Several solutions were found to the steady–state de-
coupling and pole placement without cancellation of

invariant zeros problem, two of them which are re-
ported here. The first one essentially corresponds to
complete lower diagonal decoupling (a special case
of steady–state decoupling) maintaining all invariant
zeros and is given by

F �

�
�0�0220 0�2525 0�0018�0�0369
�2�5241 12�6163 0�2077�0�3780

	
(38)

and

E �

�
0�2632 �0�1238
30�1934�7�0287

	
� (39)

The corresponding step response is given in Fig. 4.
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Fig. 4. A step response of the resulting lower diagonal
decoupled system.

The second solution is complete steady–state decou-
pling, again maintaining all invariant zeros and is
given by

F �

�
0�0357 0�0242�0�0093 0�0006
�2�546 8�63 �0�360 0�543

	
(40)

and

E �

�
�0�347�0�0158
19�90 �4�530

	
� (41)

The corresponding step response is given in Fig. 5.

6. CONCLUSIONS AND FUTURE STUDIES

It is known that the general problem of decoupling
and pole placement without cancelling the invariants
zeros can be solved for some examples, while in other
cases no solution exists. In this paper, it was attempted
to solve this problem for an experimental model de-
veloped of a primary grinding circuit containing two
unstable invariant zeros due to input time delays, by
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Fig. 5. A step response of the resulting steady–state
decoupled system.

placing the system poles such as to cancel stable in-
variant zeros, but leaving unstable invariant zeros in
tact. This was done by searching for all solutions of
the nonlinear system of equations composed of the
characteristic equation and the decoupling conditions
based on the ideas of the global optimization algo-
rithm proposed by Maranas and Floudas (Maranas and
Floudas, 1995). No solutions were found to the com-
plete problem, however, solutions were found for the
close to lower diagonal decoupling problem as well as
the steady–state decoupling problem.

Expanding the results of (Lohmann, 2000) for the case
D �� 0, the simultaneous steady–state decoupling and
pole–placement problem was solved for the primary
grinding circuit by finding the state–feedback using
an eigenvector based approach without cancelling in-
variant zeros, and using the steady–state decoupling
condition for finding the static feedforward matrix.

It is of interest to consider other related MIMO prob-
lems, such as more general eigenstructure placement
problems. It is of particular interest to explore the
solution of such control problems using the global
optimization approach developed in (Hauksdóttir and
Ierapetritou, 2001).
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