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continuous systems when results are known. In addition, all known results of positive periodic
linear systems are discussed in the paper. Those results are discussed either with algebraic and
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and controllability properties are studied for both kind of systems. ©IFAC 2002
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1. INTRODUCTION

In this paper we deal with positive discrete-time linear
control systems in the state-space model, i.e., systems
whose states and inputs are nonnegative. Such sys-
tems appear in many different real situations such as
in economics, biological, environmental and chemical
processes, among others. Different studies have been
modellized with positive systems, for instance, fugac-
ity models (Bru et al., 1998), crop supply analysis
(Kalaitzandonakes and Shonkwiler, 1992) and man-
power planning systems (Caccetta et al., 2000). Pos-
itive system behavior seems to be intrinsic for many
real-life dynamic systems. Positive linear systems are
defined on cones and not on linear spaces. Conse-
quently, many well known properties of linear systems
cannot be applied to positive systems. The nonnega-
tivity condition yields a different treatment of these
control systems based upon the theory of nonnegative
matrices.

1 Partially supported by Spanish grant DGI BFM2001-2783 and by
Australian Research Council grant A00001126.

In the literature, a lot of work has been done on
positive linear systems, either, in papers and books.
In the book by (Farina and Rinaldi, 2000), a great
number of applications and problems of positive linear
systems were presented. it is worth to notice that the
books of (Luenberger, 1979) and (Berman et al., 1989)
study general dynamic systems and nonnegative ma-
trices, respectively, which both topìcs are basic on the
developing of positive linear systems theory. Many
authors have studied different problems concerning
positive linear systems. New results have appeared and
new chapters of the systems theory for positive linear
systems such as reachable sets (see (Farina and Ben-
venuti, 1997) and (Rumchev, 1989)), non-negative and
minimal realizations (see (Anderson, 1997), (Farina,
1996), (Kaczorek, 1997) and (Van den Hof, 1997)),
feedback control (Rumchev and James, 1995b) and
reachability and controllability (see (Murthy, 1986),
(Ohta et al., 1984), (Coxson and Shapiro, 1987)). It
must be indicated also that reachability and controlla-
bility results on singular positive systems, descriptor
positive systems and on 2-D positive systems are not
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included in this survey. Other researchers such as (Bru
and Hernández, 1989) and (Bru et al., 1997) deal with
the positive periodic case.

The objective of the paper is to collect and analyze
the recent results in reachability and controllability
theory, focusing in the recent years for positive in-
variant linear systems and from the first results for
positive periodic linear systems. The paper is orga-
nized as follows. Reachability and controllability cri-
teria in algebraic form for positive invariant systems
are presented in section 2. Criteria in digraph form
and related problems are discussed also in that section.
Reachability and controllability characterizations are
given for positive N-periodic systems throughout sec-
tion 3. In section 4, canonical forms for positive invari-
ant and periodic cases are shown. In section 5 results
on essential reachability and controllability are tackled
and characterizations for recognizing these properties.
Section 6 concludes the survey.

2. TIME-INVARIANT SYSTEMS

2.1 Discrete-time systems

A positive N-periodic discrete-time linear control sys-
tem is given by

x(k +1) = A(k)x(k)+B(k)u(k),k ∈ Z+, (1)

where the period N ∈ N, A(k) = A(k + N) ∈ R
n×n
+ ,

B(k) = B(k + N) ∈ R
n×m
+ , x(k) ∈ R

n
+ is the nonneg-

ative state vector and u(k) ∈ R
m
+ is the nonnegative

control or input vector. This system is denoted by
(A(·),B(·))N ≥ 0.

In particular, for period N = 1 appears the positive
invariant system, that is,

x(k +1) = Ax(k)+Bu(k), k ∈ Z+, (2)

where A and B are constant matrices with nonnegative
entries. The system (2) is denoted by (A,B) ≥ 0.
Note that if the initial state vector is nonnegative, that
is, x0 ≥ 0 and the input vector u(k) is nonnegative
for every k ≥ 0, then the state vector x(k) is also
nonnegative in any other instant k.

2.1.1. Algebraic characterizations of the reachability
and controllability properties In this subsection, we
summarize the main results obtained for characteriz-
ing the structural properties of positive reachability,
controllability and null-controllability for positive N-
periodic linear systems and positive invariant systems.

Definition 1. A positive N-periodic system (1) is said
to be

(a) reachable at time s (from 0) if, for any nonnega-
tive state x f ∈ R

n
+, there exists a nonnegative in-

put sequence transferring the state of the system

from the origin at time s, x(s) = 0, to x f in finite
time. It is reachable if it is reachable at time s,
for all s ∈ Z+.

(b) (completely) controllable at time s if, for any pair
of nonnegative states x0 and x f , there exists a
nonnegative input sequence transferring the state
of the system from x0 at time s, x(s) = x0, to x f

in finite time. The system is controllable if it is
controllable at time s, for all s ∈ Z+.

Note that if N = 1, we have the reachability and
controllability concepts for the invariant case (see
(Coxson and Shapiro, 1987)). It is worth noting that
for positive systems, on the contrary to the general
case, reachability from zero does not imply control-
lability to zero. Further, in this case, complete con-
trollability is obtained only if one adds controllability
to zero to reachability from zero (see (Coxson and
Shapiro, 1987)).

Given a nonnegative pair (A,B) ≥ 0 is established
the following results (see for example (Caccetta and
Rumchev, 2000)).

Theorem 1. The non-negative pair (A,B) is

(i) reachable if and only if the n-step reachability
matrix ℜn(A,B) =[B, AB, A2B, . . . , An−1B

]

con-
tains an n×n monomial submatrix;

(ii) null-controllable if and only if A is a nil-potent
matrix;

(iii) controllable (in finite time) if and only if it is
reachable and null-controllable.

For remarks regarding the proof of theorem 1 see
(Caccetta and Rumchev, 2000). It is worth mentioning
that to our knowledge an algebraic proof of the reach-
ability criterion in part (i) of theorem 1 is not known
to date. It is still an open problem.

When B is an n× 1 matrix (column), denoted as b,
(Coxson and Shapiro, 1987) have given an algebraic
proof of the reachability criterion (i) in theorem 1
for non-negative matrices A containing a diagonal.
They have further conjectured that this result holds
for the more general case. (Coxson et al., 1987) have
proved the conjecture using a graph-theoretic tech-
nique. An algebraic proof of this conjecture is given
by (Rumchev, 2000). (Fanti et al., 1989) have also
studied controllability and reachability from a graph-
theoretic viewpoint and have obtained a similar cri-
terion, namely the pair (A,b) ≥ 0 is reachable if and
only if (i) ℜn(A,b) is non-singular, and (ii) the in-
verse ℜ−1

n (A,b) ≥ 0. Since the only class of nonneg-
ative matrices which have non-negative inverses (see
(Berman and Plemmons, 1994)) is the class of mono-
mial matrices it is easy to see how (Fanti et al., 1989)
result relates to the reachability criterion in theorem
1(i). (Murthy, 1986) has obtained a criterion for the
class of nonsingular positive single–input systems.



It is interesting to mention the equivalence between
reachability and the totally oscillatory behavior of
single-input systems single-output positive systems
revealed in (Rumchev and James, 1995a), and the
relation between the famous Farcas’ Lemma and
the reachability properties of positive systems, (see
(Rumchev and James, 1989)).

2.1.2. Digraph characterizations of reachability and
controllability properties In this subsection we col-
lect the characterization results of reachability and
controllability in terms of the digraph of the matrix
system A. First we recall the basic combinatorial con-
cepts used in the results.

Let D(A) be the digraph of an n × n non-negative
matrix A constructed as follows. The set of vertices
of D(A) is denoted as N = {1,2, . . . ,n}. There is an
arc (i, j) in D(A) if and only if a ji > 0. The set of all
arcs is denoted by U . A walk in D(A) is an alternating
sequence of vertices and arcs. A walk is called closed
if the initial and final vertices coincide and spanning
if it passes through all the vertices of D(A). A walk
is said to be a path if all of its vertices are distinct,
and a cycle if it is a closed path. The path length is
defined to be equal to the number of arcs it contains.
The number of arcs away from a vertex i is called
outdegree of i and is written od(i), whilst the number
of arcs directed toward a vertex i is called indegree
of i and is written id(i) (see (Foulds, 1992)). Notice
that zero columns in A correspond to vertices j with
od( j) = 0 in D(A); respectively, zero rows correspond
to vertices with id(i) = 0. The positive entries in the
columns of B≥ 0 are identified with the corresponding
vertices in D(A).

We distinguish the following monomial components of
a digraph: simple monomial paths (s.m.p.), blossoms
and bunches. A path {i1, i2, . . . , ik, ik+1} is called i1-
monomial path of length k if and only if all outdegrees
od(is) = 1, for s = 1, . . . ,k. This notion is the same of
deterministic path used in (Valcher, 1996) and (Bru
et al., 2000a). Note that the outdegree od(ik+1) of
a monomial path is not specified - it can be any.
An i1-monomial path is called simple if od(ik+1) =
0 and id(i1) = 0. The vertex i1(s) is called origin,
and the vertex ik+1 with zero outdegree - end of the
s.m.p. An isolated vertex j is a particular kind of
s.m.p. of length zero with id( j) = od( j) = 0. A walk
{i1, i2, . . . , ik, ik+1, ik+2} is said to be a blossom if all
its vertices is, s = 1,2, . . . ,k,k + 1, are different and
ik+2 = is for some s. Any blossom contains a cycle.
Obviously, the cycle is a particular kind of blossom
with ik+2 = i1. The blossom becomes a s. m. p. of
length k if the arc (ik+1, ik+2) is removed from it. A
bunch is a union of a blossom (possibly, a cycle) and
monomial paths (possibly, s. m. p.) joined with the
tops only to the vertices of the cycle of the blossom.
Clearly, od(s) = 1 for s ∈ G j but id(s) = 0 if s is an

origin and id(s) ≥ 01 if s is any other vertex of the
bunch.

A canonical decomposition of the digraph D(A) into
monomial components has been found recently in
(Rumchev, 2000). The idea of decomposing is the
following: If all of the outward arcs from vertices with
od(i) ≥ 2 in D(A) = (N,U) are removed from D(A)
then the reduced digraph D(0)(Au) = (N,U (0)) be-
comes a union of disjoint monomial structures (s.m.p.,
blossoms or cycles, monomial trees and bunches)
since od(i) < 2 for any vertex i ∈ D(0)(Au). Then,
by using procedures MONTREE and BUNCH (see
(Caccetta and Rumchev, 1998)) the digraph D(0)(Au)
can be reduced to a union D(A0) of disjointed canon-
ical monomial components. The matrix A0 of the re-
duced digraph D(A0) is contained in A. It represents
the canonical monomial components of A only.

Lemma 1. If od(i) ≥ 1 for i ∈ D(A). Then a non-
monomial column b cannot generate monomial co-
lumns in the sequence (3).

Lemma 2. Let od(i) ≥ 1 for i ∈ D(A). Then the di-
graphs D(A) and D(A0) have the same monomial
structure, that is a monomial column b generates the
same sequence of linearly independent monomials

b,Ab,A2b, . . . ,Akb (3)

and b,A0b,A2
0b, . . . ,Ak

0b.

From the above lemmas, the monomial behavior of
the sequence B,AB,A2B, . . . ,AkB, is completely deter-
mined. The next result is a reachability criterion in
digraph form (see (Rumchev, 2000)).

Theorem 2. Let A ≥ 0, and suppose that the asso-
ciated digraph D(A) has no vertices with od(i) =
0. Let also I1 = {i1(1), i1(2), . . . , i1(m)} and J1 =
{ j1(1), j1(2), . . . , j1(s)} be, respectively, the sets of
all origins (of monomial paths and blossoms) and any
set of vertices such that j1(k) ∈ Ck for k = 1,2, . . . ,s,
where Ck are disjointed cycles in the reduced digraph
D(Ao). Then the pair (A,B) ≥ 0 is reachable if and
only if the matrix B contains a monomial submatrix
B0 = DE where D is a diagonal matrix and E =

diag
[

ei11
| · · · |eµ

i1
|e j11

| · · · |e jσ1

]

.

For null-controllability property in digraph form is
given also in (Rumchev, 2000), that is, the pair
(A,B) ≥ 0) is null-controllable if and only if there are
no cycles in the digraph D(A).

The particular case of theorem 2 for single–input
systems has been established by (Coxson et al., 1987).
In fact, they give te following result.

Theorem 3. Let (A,b)≥ 0. Then, this system is reach-
able if and only if b is i-monomial and the D(A) is



a union of an i-monomial path of length n − 1 and,
possibly, arcs {(in, i), i = 1, . . . ,n}.

The particular digraph D(A) of the above theorem is
called a palm in (Bru et al., 2001b), where the authors
introduced new monomial components for studying
the characterization of reachability of a general pair
(A,B) ≥ 0. In fact, they use the following monomial
structures: (i) monomial trees: a digraph T is called
a monomial tree if it is a union of different mono-
mial paths, originating at different vertices connected
among them from the last vertices only without form-
ing cycles, and containing at least a single monomial
path. In particular, a single monomial path is con-
sidered as a monomial tree; (ii) flowers: a digraph F
is said to be a flower if it consists of a monomial
path, of lenth p − 1, (i1, i2, . . . , ip) linked to a cycle
(ip+1, ip+2, . . . , ip+k+1), such that from the vertex ip of
the monomial path, there are arcs (ip,T ) leading to
vertices of the monomial tree T , in addition to the arc
(ip, ip+1); (iii) palms: A digraph P is called a palm if
it consists of a monomial path (i1, i2, . . . , ip) and, at
least one arc of the types (ip, ik), k = 1, . . . , p, (ip,F)
leading to vertices of the flower F, or (ip,C) leading
to vertices of the cycle C.

Consider the nonnegative pair (A,B) and the associ-
ated digraph D(A). Recall that the positive entries of
the monomial columns of B are identified with the cor-
responding vertices in D(A) called origins. From these
origins, construct the monomial structures, without re-
peating vertices, as follows: (a) all possible monomial
trees. The initials vertices of all monomial paths of the
monomial trees form the index set of origins T ; (b) all
possible flowers. The initials vertices of all monomial
paths of the flowers form the index set of origins
F ; (c) all possible palms. The initials vertices of all
monomial paths of the palms form the index set of
origins P , and (d) all possible (non) monomial cycles
from the nonmonomial columns of B blr = elr + w,
where the positive components, if there are, of vec-
tor w are identified with vertices in a monomial tree.
Indices lr form the set of origins C .

Then, every vertex of D(A) can belong to exactly one
monomial subgraph. Let D′(A) denote the digraph
of A formed from the union of all these monomial
subgraphs. Note that D′(A) is a spanning subgraph of
D(A) and the only arcs of D(A) that are not in D′(A)
are those connecting two monomial structures. Let L
be the set of such arcs. Then,

D(A) = D′(A)
⋃

L

Theorem 4. Let A ≥ 0 and let D(A) be the associated
digraph. Let T , F , P , C the index set of the origins
of the monomial subgraph, respectively, monomial
trees T , flowers F , palms P, and (non) monomial
cycles C of D(A). Then, the pair (A,B) is reachable
if and only if D′(A) is a union of these monomial
subgraphs, that is:

D′(A) =
ct
⋃

t=1

Tt

c f
⋃

f =1

Ff

cp
⋃

p=1

Pp

cp
⋃

c=1

Cc

where ct ,c f ,ck and cp stand for the number of mono-
mial trees, flowers, palms and (non) monomial cycles,
respectively.

Theorem 4 gives all possible reachable monomial
components for any general system (A,B) ≥ 0. (Bru
et al., 2000a) study that characterization in a different
manner. They work with the concept of deterministic
path already used in (Valcher, 1996). They establish a
reachability criteria from the deterministic paths origi-
nating at vertices corresponding to monomial columns
of the matrix B and related cycles. Namely, this char-
acterization is in terms of specific subsets of vertices
covering the whole set of vertices of D(A). These
subsets of D(A) are basic to construct the canonical
forms which are described in section 4.

From these characterizations given in terms of the
digraph D(A), it could be applied some computational
algorithms to decide whether or not a positive pair
(A,B) is reachable. For the case of theorem 2, that
is when the matrix A has no zero columns that al-
gorithm has been proposed, as it was pointed out in
(Rumchev, 2000). However, it remains an open prob-
lem to construct a computational algorithm for the
general case of theorem 4.

2.2 Continuous-time systems

There are not many results on continuous-time posi-
tive systems, there are only some sufficient conditions
for the reachability property detailed below.

Definition 2. The system

ẋ = Ax+Bu (4)

is called positive if for u(t) ≥ 0 the system trajectory
x(t)≥ 0 is always non-negative for t ≥ 0 whenever the
initial state x(0) ≥ 0.

Definition 3. The positive invariant system (4) is
called reachable if for any state x ≥ 0 there exist a
finite t and a non-negative control vector u(τ) ≥ 0,
t τ ∈ [0, t] that transfers the system from the origin
x(0) = 0 to the state x = x(t).

Early results for single-input positive systems can
be found in Ohta, Maeda and Kodama (1984). As
a matter of fact they do not provide criterion for
testing the reachability (controllability) property of the
system. Their result can hardly be used to identify
such a property.

(Kaczorek, 2001) quite recently has found sufficient
conditions for reachability of the system (4).



Theorem 5. The positive invariant system (4) is reach-
able (from the origin) in time t if the matrix

Rt =

t
∫

0

eAτ BBteAT τ dτ .

(T denotes the transpose) is a monomial matrix. More-
over, the control vector that steers the system (4) from
x(0) = 0 to the state x ≥ 0 is given by the expression

u(t) = BT eAT t R−1
t x, t ≥ 0.

Theorem 6. The positive system (4) is reachable in
time t if A is a diagonal matrix and B ≥ 0 is a
monomial matrix.

The authors do not know other results on reachability
(controllability) of continuous-time positive systems.
The proof of necessity is still an open problem.

3. PERIODIC SYSTEMS

3.1 Discrete-time systems

A positive N-periodic discrete-time linear control sys-
tem

x(k +1) = A(k)x(k)+B(k)u(k),k ∈ Z+, (5)

is equivalent to N positive invariant systems defined
by

xs(k +1) = Asxs(k)+Bsus(k),

s = 0,1, . . . ,N −1
(6)

where

As=φA(s+N,s)

Bs=[B(s+N−1),φA(s+N,s+N−1)B(s+N+2),

. . . ,φA(s+N,s+1)B(s)] ,s = 0,1, . . . ,N −1.

By φA(k,k0), we denote the transition matrix of the
system (5),

φA(k,k0) = A(k−1)A(k−2) · · ·A(k0), k > k0,

φA(k0,k0) = I.

This equivalence was proved independently in (Bittanti
and Bolzern, 1985) and (Hernández and Urbano,
1987), where

xs = x(kN + s)

us(k) = col [u(kN + s+N−1), . . . ,u(kN + s)] ,

are the relationships between the state and input vec-
tors of the two systems.

The state x(k) of the system (5) at the time k
when is applied the control sequence u(k0), u(k0 +

1), . . . ,u(k− 1), from the initial state x0 at time k0 is
given by

x(k) = φA(k,k0)x0+

+
k−1

∑
j=k0

φA(k, j +1)B( j)u( j), k ≥ k0

With the positive restrictions, x0 ≥ 0, x f ≥ 0, u( j)≥ 0,
j = s−k f ,s−k f +1, . . . ,s−1, A(k)≥ 0 and B(k) ≥ 0
for all k = 0,1, . . . ,N − 1, the structural properties of
the systems (5) and (6) are related, by means of the
above equivalence, as follows.

Proposition 1. (see (Bru and Hernández, 1989)) The
positive periodic system (5) is completely positive
controllable at s if and only if the positive invariant
system (6) corresponding to index s is completely
positive controllable, for every s = 0,1, . . . ,N −1.

Moreover, for every s = 0,1, . . . ,N −1, all system (5)
completely controllable at s is completely reachable at
s. And, for all system (5) completely reachable at s, the
k-step reachability matrix of the associated invariant
system (6) given by

C(s)
k =

[

Bs,AsBs, . . . ,A
k−1
s Bs

]

n×kNm

has rank n for some k. This assertions are equivalent
in the case without positive restrictions (see (Urbano,
1987)).

Reachability and complete controllability properties
were studied in terms of the cones of reachability.

Definition 4. For each s = 0,1, . . . ,N −1:

(i) The k-reachable cone at s of the positive periodic
system (5), Rk(A(·),B(·),s), is defined as the set
of reachable states in k-steps from zero at time s.

(ii) The k-reachable cone of the positive invariant
system (6), Rk(As,Bs), corresponding to index s
is defined as the set of reachable states in k-steps
from zero at time zero.

The above cones are related as follows.

Lemma 3. (see (Bru and Hernández, 1989)) For each
s = 0,1, . . . ,N −1:

Rk(A(·),B(·),s) = Rp(As,Bs), k = pN.

Remark 1. For each s = 0,1, . . . ,N −1:

(i) For the positive periodic system (5), the set of
states which are reachable at s in finite time with
nonnegative inputs is given by

R∞(A(·),B(·),s) =
⋃

k∈N

Rk(A(·),B(·),s)

(ii) For the positive invariant system (6), correspond-
ing to index s, the set of states which are reach-



able in finite time with nonnegative inputs is
given by

R∞(As,Bs) =
⋃

k∈N

Rk(As,Bs)

Therefore, completely reachable at time s of the sys-
tem (5) is equivalent to R∞(A(·),B(·),s) = R

n
+. Hence,

following result holds.

Proposition 2. (see (Bru and Hernández, 1989)) The
positive periodic system (5) is completely positive
controllable at s if and only if φA(s+N,s) is nilpotent
and R∞(A(·),B(·),s) = R

n
+.

Till now, we have seen characterizations of the struc-
tural properties of a positive periodic system (5) using
N positive invariant systems (6). In the following, we
indicate new characterizations of the structural proper-
ties of such system (5) obtained by an associated pos-
itive invariant system, the positive invariant cyclically
augmented system.

Park and Verriest (see (Park et al., 1989)) introduced
the positive invariant cyclically augmented system as-
sociated with a positive N-periodic system (5), which
is given by

z(k +1) = Aez(k)+Beue(k), (7)

where Ae ∈ R
nN×nN
+ is weakly cyclic of index N (see

(Varga, 1962)), that is,

Ae =

[

O A(0)
A 0

]

,

with A = diag[A(1), . . . ,A(N−1)] and Be = diag[B(0),
B(1),. . . ,B(N − 1)] ∈ R

nN×mN
+ . Moreover, the state

vector and the input vector of system (7) are associated
with the stacked vectors of the inputs and the states
of (5), x̂(k) = col [x(k),x(k +1), . . . ,x(k +N −1)] and
û(k) = col [u(k),u(k + 1), . . . ,u(k + N − 1)], by the
following relations

z(k) = Mk−1
n x̂(k), ue(k) = Mk

mû(k),

where

M j =

[

O I j

I(N−1) j 0

]

,

and Iq is the identity matrix of order q. We denote the
invariant system given in (7) by (Ae,Be).

As the invariant system (7) is constructed from the
associated periodic system (5) then their respective
cones can be related as follows.

Proposition 3. (see (Bru et al., 1997)) Let x ∈ R
nN
+ ,

where x = col[x1x2 · · ·xN ] and x j ∈R
n
+. Then, Rk(Ae,Be)

if and only if x j ∈ Rk(A(·),B(·), j), j = 1, . . . ,N.

Hence,

Corollary 1. (see (Bru et al., 1997)) For each k ∈ Z,
Rk(Ae,Be) = R

n
+ if and only if Rk(A(·),B(·), j) = R

n
+,

∀s ∈ Z.

Therefore, the positive periodic system (5) is (com-
pletely controllable) reachable if and only if the pos-
itive invariant system (7) is (completely controllable)
reachable (see (Bru et al., 1997) and (Romero, 2001)).

3.2 Continuous-time periodic systems

To our knowlegde, there are not any result on conti-
nuous-time periodic linear systems. Then, many open
problems remain to work in this case.

4. CANONICAL FORMS

In (Valcher, 1996) was obtained a first general canoni-
cal form of reachability property of a positive invariant
system (2) with state matrix devoid of zero columns.

Theorem 7. Let A be an n× n positive matrix devoid
of zero columns. The positive system (A,B) ≥ 0 is
reachable if and only if there exist permutation matrix,
P and Q, of suitable dimensions, such that
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PT AP| PT BQ
]
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...

∗ 0 . . . + ∗ 0 . . . 0 ∗ 0 . . . 0 0 0 . . . 0
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...

...
. . .

...
...

...
. . .

... . . .

...
...

. . .
...

...
...
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∗ 0 . . . 0 ∗ 0 . . . 0 ∗ 0 . . . + 0 0 . . . 0
∗ 0 . . . 0 ∗ 0 . . . 0 ∗ 0 . . . 0 0 0 . . . +
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From this result a characterization of single-input pos-
itive system was given in (Valcher, 1996).

Theorem 8. The single-input positive invariant system
(A,b) ≥ 0 is reachable if and only if there exists
permutation matrix P such that

[

PT AP|PT g
]

=















∗ + 0
∗ + 0
...

. . .
...

∗ + 0
∗ · · · 0 +

















In theorem 1 of (Caccetta and Rumchev, 1998) was
proved that this permutation matrix is unique. The
above proposition was reformulated in the following
graph-theoretic form.

Theorem 9. (see (Caccetta and Rumchev, 1998)) The
pair (A,b) ≥ 0 is reachable if and only if b is an i1-
monomial and the digraph D(A) of A is a union of
an i1-monomial path of length n − 1 that spans all
the vertices, i. e., an i1-monomial spanning path, and
possibly, arcs {(in, i), i = 1, . . . ,n}

When considering systems without nonnegative re-
strictions, we know that the reachability and complete
controllability properties are transferred under similar
transformations. However, in the positive case, these
properties can be transferred only under special matri-
ces for preserving the positive restrictions.

Theorem 10. (see (Romero, 2001) and (Bru et al.,
2001a)) Let (F,G) ≥ 0 be a reachable positive invari-
ant system similar to (F̂ , Ĝ) ≥ 0, where F̂ = M−1FM
and Ĝ = M−1G. Then, (F̂ , Ĝ)≥ 0 positively reachable
if and only if M is a monomial matrix

The above property has represented an important ad-
vantage in this area because has allowed to obtain gen-
eral canonical forms of the reachable and controllable
positive invariant systems. In addition that property,
give rise to open questions such as the study of invari-
ants of a system.

Given a positive invariant system (2), in (Bru et
al., 2000a) canonical forms of reachability and con-
trollability properties were obtained. These are based
on characterizations of the digraph of A that was held
previously.

Theorem 11. Given a positive invariant system (2).
Then, (A,B) is reachable if and only if there exist
permutation matrices P and Q such that the matrix
[PT AP|PT BQ] has the following structure

[PT AP|PT BQ] =














C O O O ∆nR1

O B O Σ ∆nR2

O O A
′ ∆nB

∆nR3

O O O AnB ∆nR4

O O O O AnR

O O O GC

O O O O
O O GA ′ GA ′

C

O GnB O O
GnR O O O

GR















(8)

where

• C and B are block diagonal matrices with irre-
ducible cyclically blocks, that is,















0 +
0 +
...

. . .
0 +
+ · · · 0















(9)

• Σ = diag [Φ, . . . ,Φ] and ∆nB = ∆nR j
= diag [Ψ,

. . . ,Ψ], j = 1,2,3,4 with

Φ =















0 0
0 0
...

. . .
0 0
+ · · · 0















,Ψ =















∗ 0
∗ 0
...

. . .
∗ 0
∗ · · · 0















. (10)

• A ′ is a block upper triangular matrix as follows

A
′ =















A1 ∆ · · · ∆ ∆
O A2 · · · ∆ ∆
...

...
. . .

...
...

O O · · · An−2 ∆
O O · · · O An−1















, (11)

where each A j, for j = 0,1, . . . ,n− 1 is a block
diagonal matrix, where each block is















0 +
0 +
...

. . .
0 +
0 · · · 0















. (12)

and the matrices ∆ are in the same way that the
matrices ∆nB .

• AnB is a block diagonal matrix with blocks in the
same that (12).

• AnR is a block matrix where all off-diagonal
blocks are Ψ and the blocks in the diagonal are
given by















∗ +
∗ +
...

. . .
∗ +
∗ · · · 0















.

• GA ′
C

is a nonnegative matrix with at least one
positive entry in each one of their columns.
GC, GA′ , GnB y GnR are in the same way,











O O · · · M

...
...

...
O M · · · O
M O · · · O











(13)

where the blocks M is formed by a unique
column of the type col [0 0 . . .0 +].

• Finally, the submatrix GR contains the remaining
columns of the matrix B ordered by the permuta-
tion matrices P and Q.

From this canonical form of reachability and adding
the condition of nilpotence of the state matrix the fol-
lowing canonical form of controllability was obtained
in (Bru et al., 2000a).



Theorem 12. Given a positive invariant system (2).
Then, (A,B) is completelly controllable if and only if
there exist permutation matrices P and Q such that the
matrix [PT AP|PT BQ] has the following structure

[PT AP|PT BQ] =
[

A
′

GA ′ GR
]

(14)

where

• A ′ is a block upper triangular matrix as in (11).
• GA′ is a matrix of the type given in (13).
• Finally, in GR remain the rests columns of the

matrix B ordered depending on the permutation
matrices P and Q.

The study of assignment-pole by means of feedbacks
in the positive case can be developed in a more de-
tailed manner using these canonical forms. This ques-
tion is a open problem.

5. ESSENTIAL REACHABILITY AND
CONTROLLABILITY

In (Coxson and Shapiro, 1987), it was pointed out that
for some positive systems the set of states which are
reachable in finite time with nonnegative inputs is not
equal to R

n
+, however, each one of the nonnegative

states not reachable in a finite time can be limit of a
sequence of nonnegative reachable states in a finite
time. This fact motivated the introduction of new
structural properties which were introduced in the
invariant case in (Coxson and Shapiro, 1987) and in
the periodic case in (Bru and Hernández, 1989).

Next, we give the following concepts for N-periodic
systems.

Definition 5. A positive periodic discrete-time linear
system (5) is said to be

(a) essentially reachable at time s if for every pos-
itive final state x f � 0, there exists a nonnega-
tive input sequence transferring the state of the
system from the origin at time s, x(s) = 0 to x f

in a finite time. It is essentially reachable if it is
essential reachable at time s, for all s ∈ Z.

(b) essentially (completely) controllable at time s
if for every pair of nonnegative states x0 ≥ 0
and x f � 0 e there exist a nonnegative input
sequence transferring the state of the system
from x0 at time s, x(s) = x0, to x f in a finite time.
It is essentially (completely) controllable if it is
essentially controllable at time s, for all s ∈ Z.

(c) Asymptotically zero-controllable at time s if if
for every nonnegative state x0 ≥ 0 there exist a
nonnegative input sequence transferring the state
of the system from x0 at time s, x(s) = x0, to
origin. It is asymptotically zero-controllable if it
is asymptotically zero-controllable at time s, for
all s ∈ Z.

In particular, for period N = 1, the above defini-
tions correspond with the definitions of essentially
reachable, essentially controllable and asymptotically
zero-controllable for positive invariant systems 2 (see
(Coxson and Shapiro, 1987) and (Valcher, 1996)).

A similar property of essential reachability is the ex-
citability property. (Muratori and Rinaldi, 1991) have
given a characterization of excitability of single–input
systems, that is, reachability for only strictly positive
state vectors x, with xi > 0, for all i = 1,2, . . . ,n. In
addition, they relate this property to stability, as

Theorem 13. For a single–input positive invariant sys-
tem (A,b), consider these three properties:

(a) (A,b) has a strictly positive non–trivial equilib-
ria;

(b) (A,b) is excitable;
(c) (A,b) is stable.

Then, any pair of properties (a), (b) and (c) implies the
third.

5.1 Positive invariant discrete-time systems

Consider an invariant system (2). In (Coxson and
Shapiro, 1987) the above properties are related in the
following way.

Theorem 14. (see (Coxson and Shapiro, 1987)) A
positive periodic system (5) is essentially controllable
if and only if it is asymptotically zero-controllable and
essentially reachable.

The proposition 4 indicates that the structural property
of essential controllability of a positive invariant sys-
tem (2) depends on the spectrum of the state matrix. In
(Coxson and Shapiro, 1987), it was proved that essen-
tial reachability is equivalent to reachability if the state
matrix is irreducible and primitive. (Valcher, 1996)
extended this result to the class of irreducible matrices
(not necessarily primitive). Another interesting result
is given in (Coxson and Shapiro, 1987) revealing the
behavior of the columns of the reachability matrix
ℜt(A,B) for the class of irreducible matrices and large
t.

In (Valcher, 1996), it was obtained a first approxi-
mation by means of the directed-graph theory of the
essentially reachable property of a positive invariant
system (2). That characterization was realized in terms
of the communicating classes of the directed-graph of
the state matrix.

Theorem 15. (see (Valcher, 1996)) Let (A,B) ≥ 0.
Then the following facts are equivalent:

(i) (A,B) is essentially reachable;
(ii) for every vertex i 6∈ I(A,B), where I(A,B) is the

set of indices of all the monomial columns in the



reachability matrix ℜn(A,B), the following facts
hold:
(a) i belongs to some closed communicating

class C ji of D(A), which consists either of
the single vertex i or of hi vertices connected
by a single cycle;

(b) there exists some column vector bτi in B
such that for every positive integer t ≥ n the
block of components of Atbτi corresponding
to C ji , that is, blockC ji

(Ft bτi), constitutes a
monomial vector. Moreover, each class C 6=
C ji such that blockC(Ft bτi) > 0, for some
t ∈ N, has a spectral radius not greater than
the spectral radius of C ji , and if it coincides
with the spectral radius of C ji , then the class
C has access to C ji ;

(iii) for every i 6∈ I(A,B) there exist τi ∈ {1,2, . . . ,m}
and an integer hi with 0 ≤ ci < hi such that

lim
t→∞

Aci+thibτi

||Aci+thibτi ||∞
= ei.

New combinatorial characterizations was given in
(Bru et al., 2000a) using the above theorem and hence,
canonical forms of essentially reachable and control-
lable positive invariant system which are presented in
the following result.

Theorem 16. Given a positive invariant system (2).
Then, (A,B) is essentially reachable if and only if
there exist permutation matrices P and Q such that the
matrix [PT AP|PT BQ] has the following structure

























D2 O O O O O ∆ ∆
O C O O O O ∆ ∆
O O B O O Σ ∆ ∆
O O O D1 O O Σ ∆
O O O O A

′ ∆ ∆ ∆
O O O O O AnB ∆ ∆
O O O O O O AnD1

∆
O O O O O O ∆ AnR

G

























(15)

where C , B, A ′, AnB , AnR , ∆ and Σ have the same
structure that in the case for the reachability property
given in (8). Moreover, AnD1

is a block diagonal
matrix with blocks given in (12) and D1 and D2 are
block diagonal matrices with cyclically irreducible
blocks given in (9).

In addition,

G =





























O O O O O GD2

O O O O GC GCD2

O O O O O GBD2

O O O O O GD1D2

O O O GA ′ GA ′
C

GA ′
D2

O O GnB O O GnBD2

O GnD1
O O O GnD1 D2

GnR O O O O GnrD2

GR





























where GA ′
C

, GC, GA′ , GnB and GnR have the same
structure given in (8) for the reachability property.

Moreover GD2 is a block matrix which has the struc-
ture given in (13) and GCD2

, GBD2
, GD1D2

GA ′
D2

,
GnBD2

, GnD1 D2
, and GnrD2

are nonnegative matrices

whose entries have different combinatorial restric-
tions. In addition, there are spectral conditions on the
submatrices associated with the suitable communicat-
ing classes (see (Bru et al., 2000a)).

There exist different restrictions on the nonzero entries
of this canonical form. Moreover, adding to the above
structure of the state matrix the stability condition,
then a canonical form of essential controllable positive
invariant system (2) is obtained . All this comments
are explained in (Bru et al., 2000a).

The precedent canonical forms, for single-input pos-
itive systems are similar to those given in (Valcher,
1996).

The preservation of the essential reachability property
under feedbacks is a interesting open problem to ana-
lyze using diferent kinds of control, with nonnegative
restriction or not.

5.2 Positive periodic discrete-time systems

Consider a positive N-periodic system. The set of
states which are reachable at s, in finite time, with non-
negative inputs is given by R∞(A(·),B(·),s). To obtain
nonnegative states as limits of states in R∞(A(·),B(·),s),
the closure of this set is defined.

Definition 6. For each s = 0,1, . . . ,N −1:

(i) The reachability cone at s of the positive pe-
riodic system (5) is defined as the closure of
R∞(A(·),B(·),s), that is,

R(A(·),B(·),s) = R∞(A(·),B(·),s)

(ii) The positive periodic system (5) is essentially
reachable at time s when

R(A(·),B(·),s) = R
n
+

(iii) The reachable cone of the positive invariant sys-
tem (6) corresponding to index s is defined as the
closure of R∞(As,Bs), that is,

R(As,Bs) = R∞(As,Bs)

(iv) The positive invariant system (6) is essentially
reachable when

R(As,Bs) = R
n
+

The next lemma gives the relationship between the
reachable cones previously defined.



Lemma 4. (see (Bru and Hernández, 1989)) For each
s = 0,1, . . . ,N −1,

R(A(·),B(·),s) = R(As,Bs)

From the above definitions, the essential structural
properties can be characterized in the following way.

Proposition 4. (see (Bru and Hernández, 1989)) The
positive periodic system (5) is essentially positive
controllable at s if and only if the transition matrix
φA(s+N,s) is stable and R(A(·),B(·),s) = R

n
+.

Moreover, given a positive periodic system (5), its
structural properties remain totally determinated by
the corresponding properties of the associated invari-
ant systems (6).

Proposition 5. (see (Bru and Hernández, 1989)) The
positive periodic system (5) is essentially controllable
at s if and only if the positive invariant system (6)
corresponding to index s is essentially controllable, for
every s = 0,1, . . . ,N −1.

Theorem 17. (see (Bru and Hernández, 1989)) Con-
sider the positive system (5). If A(k) is irreducible
for all k = 0,1, . . . ,N − 1, and A(k) � 0 for some
k0 ∈{0,1, . . . ,N−1}, then R(A(·),B(·),s) = R

n
+ if and

only if for each s = 0,1, . . . ,N −1, R∞(A(·),B(·),s) =
R

n
+.

Hence,

Theorem 18. (see (Bru and Hernández, 1989)) For
each s = 0,1, . . . ,N − 1, the positive periodic system
(5) satisfies that R∞(F(·),G(·),s) = R

n
+ if and only if

RnN(F(·),G(·),s) = R
n
+.

The characterization of the essential structural proper-
ties by means of the positive invariant cyclically aug-
mented system (7) associated with the positive peri-
odic system (5) are based on the following relationship
of cones.

Proposition 6. (see (Bru et al., 1997)) Let x ∈ R
nN
+ ,

where x = col[x1x2 · · ·xN ] and x j ∈ R
n
+. Then,

x ∈ R(Ae,Be) if and only if

x j ∈ R(A(·),B(·), j), j = 1, . . . ,N.

Then, the following result follows.

Theorem 19. (see (Bru et al., 1997)) Let a positive
periodic system (5) and its associated cyclically aug-
mented system (7). If Ae is a nonnegative and irre-
ducible matrix and there exists some nonzero diagonal
element of φA(N,0) then R∞(A(·),B(·),s) = R

n
+ if and

only if R(A(·),B(·),s) = R
n
+

This theorem is an extension of theorem 1 of (Coxson
and Shapiro, 1987). Its proof is based on the theorem
2 of (Coxson and Shapiro, 1987) and in the following
property.

Proposition 7. Let Ae be a nonnegative, irreducible
matrix. If the trace of φA(N,0) is nonzero, then Ae is a
cyclic matrix of index N.

The authors of (see (Bru et al., 1997)) proved that the
conditions of the theorem 17 imply the conditions of
theorem 19, and showed with an example that such
conditions are not equivalent.

In (Romero, 2001) and (Bru et al., 2000b) a broad
study was done on essential properties of positive pe-
riodic systems by means of the directed-graph theory.
Moreover, canonical forms of essential reachability
and controllability were obtained. These results are in
(Bru et al., 2001a).

6. CONCLUDING REMARKS

In this paper, the standard and essential concepts of
reachability and controllability properties of positive
linear systems has been discussed. Results of both
discrete–time and continuous–time positive linear sys-
tems has been studied using the algebraic and combi-
natorial point of views. Those results are given for in-
variant and periodic systems. However, it seems there
are not any results for continuous periodic systems.
Then, open problems on that topic and other open
problems are presented. Further, canonical forms of
reachability and controllability are displayed, either
for invariant and periodic discrete–time positive linear
systems.
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