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Abstract: In this paper, the input-output behavior of a linear stable system is studied
in some detail. Some results are presented to make more precise the folklore statement
that outputs follow inputs for stable linear systems. Based on these results, it is also
discussed how to choose an output and how to fuse a number of sensor outputs, to
best trac k the input in stationarity.
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1. INTRODUCTION

The folklore of linear system theory maintains
that for a stable linear system the output of
the system tracks the input. As is generally the
case for such results they are almost true but
trying to make a precise statement is diÆcult if
not impossible. In this paper w e examine this
statement in some detail in the case that the input
is the output of a linear system whose eigenvalues
satisfy �+ �� � 0:

Our motivation to further study this classical
problem lies in that the results w e obtain can
be applied to other important problems suc h as
optimal input tracking and sensor fusion. It is
natural that before w ecan dev elopa procedure
to choose an output or a combination of sensors
that best tracks an input, we need to understand
when a given output tracks the input.

In the second part of the paper, w ewill discuss
a sensor fusion problem. There has been a vast
literature on sensor fusion, see for example, the
papers in (Proceedings of the IEEE, 1997) and
the references therein. How ev er, treatment of the
problem from the input tracking point of view

has to our knowledge not been addressed. The
following example sho ws the practical relev ance
of the issues we will address in the paper.

Example:Consider a mobile system that consists
of a base vehicle and a platform mounted on top of
the base. One can use, for example, inclinometers
and gyros to measure the attitude of the platform.
How ev er,it is known that the readings of these
sensors may be a�ected by the external forces
and it is desirable to compensate the e�ects due
to these forces. Now the question is if w e can
use the odometer and speedometer in the base
to estimate the force. Naturally, if w e do not
know anything about the force, the only w ayto
measure it would be to use an accelerometer,
which is a sensor of fairly high complexity. In
this paper, we will illustrate that if we can make
some assumptions on the force, it is possible to
estimate the acceleration by displacement and
velocity. More precisely, consider the dynamics

_x1 = x2

_x2 = a1x1 + a2x2 + bu:

If we know u is generated by an exo-system
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_w=�w

u= qw;

then we will discuss how to �nd an optimal
combination c1x1 + c2x2 to estimate u.

This paper is organized as follows. In section 2, we
use a classical example by Desoer to demonstrate
the research issues. In section 3, we discuss the
problem of how a given output tracks an input
in stationarity. In sections 4 and 5, we discuss
the problem of how to choose an output, or a
combination of sensors, to optimally track an
input in stationarity.

2. AN EXAMPLE FROM DESOER

This example is taken from (Desoer, 1970) and ev-
idently comes from linear circuit theory. Suppose
that we have a second order linear system that is
known to be stable. We assume that the transfer
function is of the form

G(s) =
as+ b

es2 + fs+ g

We excite the system with sinusoidal input of the
form u(t) = sin!t: Then the Laplace transform of
the output is

as+ b

es2 + fs+ g

!

s2 + !2
:

A little algebra then decomposes the product into
a sum of the form

xs+ y

es2 + fs+ g
+
As+B!

s2 + !2

where

A =
((g � e!2)a� fb)!

(g � ew2)2 + f2!2

and

B =
a!2f + (g � e!2)b

(g � ew2)2 + f2!2
:

Now we have assumed that the system is stable so
the piece of the sum with denominator es2+fs+g
decays to zero and the steady state response is
given by

As+B!

s2 + !2
:

Hence

y(t) = A cos!t+B sin!t;

which is equivalent to

y(t) =
p
A2 +B2 sin(!t+ �);

where sin� = Ap
A2+B2

. Thus � is a phase shift andp
A2 +B2 is a change in amplitude. This shows

that apart from ampli�cation and phase lag the
output tracks the input perfectly.

On the other hand, if we choose the output in such
a way that

a = f; b = g � e!2;

then we have
y(t) = u(t)

in steady state. We will consider more general for-
mulations of these two problems in the following
sections.

3. AUTONOMOUS LINEAR SYSTEMS

In this section we consider Desoer's example in
the more general case of an arbitrary �nite di-
mensional linear system with input u taken to be
the output of an unstable linear system.

Consider a stable, controllable and observable
SISO linear system:

_x=Ax + bu (1)

y= cx

where x 2 Rn and �(A) 2 C� .

The problem that we will study is the following.

Problem 1:When does there exist functions a(t)
and m(t) such that for arbitrary � and for all
suÆciently large t,

(1) supt jy(t)� a(t)u(t+m(t))j < �,
(2) a(t) is bounded and
(3) m(t) is bounded.

We will consider the case when the input u is
generated by the following exogenous system:

_w=�w; w(0) = w0 (2)

u= qw

where w 2 Rm and �(�) 2 �C+. This exo-
system can generally have a block diagonal Jordan
realization

q =
�
q1 q2 : : : qM

�
� = diag(�1;�2; : : : ;�m)

(3)

where each qm =
�
1 0 : : : 0

�
is a �rst unit vector

of length dim(�m) and the Jordan blocks corre-
spond to polynomial, exponential, and sinusoidal
functions. The output of the exo-system becomes

u(t) =

MX
m=1

qme
�mtw0m :

Such exo-systems can generate, for example, step
functions, ramp functions, polynomials, exponen-
tials, sinusoidals, and combinations of such func-
tions.



Remark: In Laplace domain the output of (1) is

Y (s) = G(s)U(s)

where G(s) = c(sI � A)�1B = b(s)
a(s) , and U(s) =

q(sI � �)�1w0 =
f(s)
g(s) . The stationary behavior is

as in Desoer's example determined by the unstable
poles in the following partial fractions expansion.

Y (s) =
b(s)

a(s)

f(s)

g(s)
=

~b(s)

a(s)|{z}
transient

+
~f(s)

g(s)| {z }
stationary

If we have a realization
~f(s)
g(s) = h(sI � �)�1r

then our concern is whether there exists bounded
functions m(t); a(t), such that

he�tr � a(t)qe�(t+m(t))w0

for large times. We will, using state space tech-
niques, show that the above expression can be
simpli�ed since it is possible to use r = w0 and
then h is obtained from the solution of a special
Lyapunov equation (note that (�; w0) need not
be controllable so it is by no means obvious that
� = w0 is a possible choice).

Proposition 1. Suppose A is a stable matrix, then
all trajectories of (x(t); w(t)) tend asymptotically
to the invariant subspace S := f(x;w) : x = �wg,
where � is the solution of

A���� = �bq:
On the invariant subspace, we have

y(t) = c�w(t):

Proof: We suspect that the proof of this propo-
sition is in the literature but have not been able
to locate a de�nitive version. We know however
that there is a vast literature on the nonlinear
case, see for example (Coddington and Levin-
son, 1984; Kelly, 1967). We include a simple proof
for the sake of completeness.

We will establish that there exists a matrix � so
that the set

S = f(x;w) : x = �wg
is invariant under the action of the linear system
in the following sense. Let

u = qw

then in order to show S is invariant we only need
to show _x = � _w. Namely,

��w = A�w + bqw (4)

which gives us the Lyapunov equation

���A� = bq: (5)

Now the eigenvalues of � are in the right half
plane and the eigenvalues of �A are in the strict

right half plane and hence no sum of eigenvalues
is zero. Thus there exists a unique solution � to
the equation, (Gantmacher, 1998).

Now consider the linear system de�ned by (1) and
(2): �

_x
_w

�
=

�
A bq

0 �

��
x

w

�
:

Using the coordinate change

�x = x��w

we have, �
_�x
_w

�
=

�
A 0
0 �

��
�x
w

�
;

which obviously implies �x(t) tends to zero for all
initial conditions. Q.E.D

Using the matrix � we have that the output
of the linear system in the steady-state can be
represented as

ys = c�w:

Now we can answer Problem 1.

Theorem 2. Suppose the input is generated by
(2), then Problem 1 has a solution a(t), m(t) if
and only if there exists a solution a(t); m(t) to
the equation

(c�� a(t)qe�m(t))e�tw0 = 0; (6)

for large t.

Proof: It is easy to see that to solve Problem 1,
we just need to have on the manifold x = �w that

y(t) = a(t)u(t+m(t)):

for some bounded a(t) and m(t). Since

ys(t) = c�w(t);

we must have, if Problem 1 is solved

c�w(t)� a(t)qw(t +m(t)) = 0:

The rest follows. Q.E.D

Even when Problem 1 does not have a solution,
the following result tells us that for such a linear
system, it can tracks the input very \tightly"
anyway by using an observer.

Proposition 3. Let the system

_w = �w; u = qw

be observable and no eigenvalue of � is a transmis-
sion zero of (1). Then the system on the invariant
subspace

_w = �w; y = c�w

is also observable.



Proof: We �rst need to establish that under the
hypotheses, the composite system

�
_x
_w

�
=

�
A bq

0 �

��
x

w

�
(7)

y = cx

is observable. Proofs of similar results can be
found, for example, in (Chen, 1984). We include
a simple proof for the sake of completeness.

De�ne

H(s) =

0
@ sI �A �bq

0 sI � �
c 0

1
A :

By Hautus test we know that the system is ob-
servable if

rank(H(s)) = n+m 8s:
If s is not an eigenvalue of �, it is easy to see that
rank(H(s)) = n + m since (c; A) is observable.
Now suppose s is an eigenvalue of �,

H(s) =

0
@ sI �A b 0

0 0 Im
c 0 0

1
A
0
@ In 0

0 q

0 sI � �

1
A :

If s is not a transmission zero of (1), then the �rst
matrix on the right-hand side has rank n+1+m

and the second has rank n + m since (q;�) is
observable. By Sylvester's inequality, we have

rank(H(s)) � n+1+m+n+m�(n+m+1) = n+m:

Therefore rank(H(s)) = n+m.

Now as we did before, we do a coordinate change
�x = x��w. Then (7) becomes

�
_�x
_w

�
=

�
A 0
0 �

��
�x
w

�
y= c�x+ c�w

It is straight forward to see that

((c; c�);

�
A 0
0 �

�
)

is observable implies (c�;�) is so too. Q.E.D.

4. INPUT TRACKING

We will now discuss how Proposition 1 can be
used to determine an appropriate output in order
to track the input in stationarity. In the same way
as in Theorem 2 it follows that the output tracks
the input if the vector c is chosen such that

(c�� q)e�tw0 = 0 (8)

This is clearly the case if c� = q. In other words,
if � has full column rank then it is possible to
design an output c for perfect input tracking in

Fusion
Sensor 

Exo-sys

Classifier

y u_x = Ax+ bu

c1x
c2x...
cNx

Fig. 1. Sensor fusion set-up.

stationarity. It is possible to show that under our
assumptions � has full column rank if dim(A) �
dim(�).

The exo-system will in many applications have
signi�cantly larger dimension than the linear sys-
tem (1) and then there only exists a solution to (8)
for special choices of initial condition w0 of the
exo-system. In the next section we discuss a strat-
egy for fusing the output of a number of sensors in
order to minimize the steady state tracking error.

5. SENSOR FUSION FOR INPUT TRACKING

We will here consider a special sensor fusion
problem where we try to minimize the tracking
error by appropriately combining the outputs of a
number of sensors. The complete system is given
in Figure 1. A sensor in our terminology means a
particular choice of ck matrix. If the state space
model represents physical variables, then typically
each ck corresponds to one state variable. The idea
is that the sensor fusion block should determine a
linear combination of the sensor signals such that
the output

y =
NX
k=1

�kckx (9)

tracks the input u in stationarity. We will here
discuss how this sensor fusion idea works for the
case when the input is generated by an observable
exo-system of the form (2). The objective of the
two new blocks is the following.

The Classi�er Block. The task of the classi�er
block in Figure 1 is to determine what Jordan
blocks are active in the generation of the input u,
i.e. it determines a setM� f1; : : : ;Mg of indices
such that the input can be represented as

u(t) =
X
m2M

qme
�mtw0m :

We will see below that this information sometimes
is enough to obtain perfect tracking. However, it is
generally important to use as much information on
the vector w0 as possible in order to obtain better
tracking. For example, if we in addition toM also
obtain an estimate ŵ0M =

�
ŵ0m1

; : : : ; ŵ0mn

�
of



the initial condition then our ability to reconstruct
the input improves. Even qualitative information
such as the relative amplitude of the various
blocks is useful.

The Sensor Fusion Block. This block takes as
input the classi�cationM and maps it to a vector
� that minimizes the steady state tracking error
for the output (9) according to some cost criterion.
We will discuss this in more detail below where we
also give necessary and suÆcient conditions for
obtaining perfect tracking. In more sophisticated
schemes we may also use an estimate ŵ0M of the
initial condition of the exo-system. This may give
better tracking, however at the price of more com-
plex classi�er and sensor fusion blocks. Note that
this scheme will be independent of the state space
realization and the convergence to the steady state
solution depends on the spectrum of A.

A main practical motivation for our sensor fu-
sion scheme is due to the limited communication
and computation resources in many embedded
systems, such as mobile robotic systems. There
is a need to develop \cheap" sensing algorithms.
The central idea in our scheme is to optimally
combine the existing sensors for state variables to
measure the external signals. This optimization
can be done o�-line and then the sensor fusion
block only needs to use a table look-up to decide
the parameter vector �. The only remaining issue
is how to design the online classi�er.

The most natural way from a systems point of
view is perhaps to use a dynamical observer (in
discrete time) to identify qualitatively the initial
condition (or the active � blocks) and then shut
it down. This is possible since the state of the
exo-system is observable from the output from
any sensor such that (ck ; A) is observable, see
Theorem 3. However, this approach could be com-
putationally expensive even if we only run it once
in a while.

For many practical systems, it is perhaps more
realistic to design the classi�er based on other
sensors that sense the interaction of the system
with the environment (such as laser scanners
and video cameras), or/and on the nature of
application the system is operated for. In this way,
typically only a range of the � blocks (such as a
frequency range) can be identi�ed.

Perfect Steady-state Tracking. Assume we are
given K sensors c1; : : : ; cK . We derive a suÆcient
(and in a sense also necessary) condition for
obtaining perfect steady state tracking using these
sensors. We have the following result.

Proposition 4. Suppose M = fm1; : : : ;mng �
f1; : : : ;Mg are the active Jordan blocks. Then we
can obtain perfect tracking if

qTM 2 Im(�TMCT )

where A�M ��M�M = �bqM and

�M = diag(�m1
; : : : ;�mn

)

qM = (qm1
; : : : ; qmn

)

CT =
�
cT1 : : : cTK

�
(10)

Proof: The steady state output will be y =
�C�MwM(t), where wM(t) = qMe�Mtw0M .
Hence, we obtain perfect tracking since our as-
sumption implies that there exists a solution to
�C�M = qM. Note that this condition is neces-
sary if w0M is allowed to take any value. Q.E.D.

If the condition of the proposition holds then
we normally want to �nd the vector � with the
minimum nonzero coeÆcients such that

�C�M = qM

in order to minimize the number of sensors used.
This can be done o�-line and then the sensor
fusion block only need to use a table look-up to
decide the vector �.

Approximate Tracking. It will often happen that
we have too few sensors or too poor knowledge
of the exo-system to obtain perfect tracking. In
such cases we need to optimize the sensor fusion
in order to get best tracking in some average sense.
We here consider two cases
Case 1: If M = fm1; : : : ;mng and the condition
in Proposition 4 does not hold then we let the
sensor fusion be determined by the solution to the
least squares problem

min
�
j�C�M � qMj

where we use the same notation as in Proposi-
tion 4. This optimization can be done in advance
and the sensor fusion can be implemented as a
table look-up.

Assume now that the classi�er has obtained more
information on the exo-system in terms of an
estimate of the initial conditions ŵ0M . This can
be used to design better sensor fusion parameters
by minimizing a cost criterion that takes this
information into account. One example is the cost

min
�

Z 1

0

j(�C�M � qM)e(�M��I)tŵ0M j2dt (11)

where � > �(�M), the spectral radius of �M.
This optimization problem is equivalent to the
weighted least squares problem min� j�C�M �
qMjQ, where jxjQ = xTQx, and Q � 0 is the
solution to the Lyapunov equation

(�M � �I)Q+Q(�M � �I)T = �ŵ0Mŵ
T
0M :



This cannot be implemented using table look-up.
Case 2: We will here consider the special case
when we know that the exo-system can generate
M sinusoidal signals but with some uncertainty
in the exact location of the frequencies, i.e., !m�
�! � ! � !m+�!. If we assume that exactly one
Jordan block is active at a time then a reasonable
optimization problem for determining the sensor
fusion is

min
�

Z !m+�!

!m��!
j�C�(!)� qj2d!: (12)

where C is de�ned as in (10), A�(!)��(!)�(!) =
�bq, q = �1 0

�
, and

�(!) =

�
0 !

�! 0

�
:

The next theorem shows that (12) has a unique
optimal solution when the number of sensors K is
less than the dimension of A. Indeed, the optimal
solution to (12) is � = Y X�1, where

Y = q(

Z !m+�!

!m��!
�(!)T d!)CT

X = C

 Z !m+�!

!m��!
�(!)�(!)T d!

!
CT

Theorem 5. The matrixZ !h

!l

�(!)�(!)T d!

where wl < wh, is strictly positive de�nite,
hence (12) is strictly convex and a unique optimal
solution exists.

Proof: Straight forward calculation shows

� = A�1! A
�
(�b !A�1b)qT ; (�!A�1b � b)qT

�
:

��T = 2jqj2A�1! (AbbTAT + !2bbT )A�T! :

where A! = !2I +A2. Now sinceZ !h

!l

(!2I +A2)�1AbbTAT (!2I +A2)�T d!

� 1

2!h

Z p
!h

p
!l

(sI+A2)�1AbbTAT (sI+A2)�T ds;

and (�A2; Ab) is obviously controllable, thus the
above integral is positive de�nite by Theorem 5.7
in (Chen, 1984). Q.E.D

5.1 An Example of optimal output design

We will use the example in the introduction to
illustrate our results. For this purpose, we will
keep the input u(t) simple. Now suppose the input
is sinusoidal with a frequency in [!l; !h]. In this
case the dimension of each Jordan block of � is

same as that of A. For each !m 2 [!l; !h], by
solving the equation

A�� �� = �bq;
we obtain

� =
1

d(!)

��(!2m + a1)b !ma2b

�!2ma2b �!m(!2m + a1)b

�
;

where d(!) = (!2m + a1)
2 + a22!

2
m: If the classi�er

can determine the frequency, then the optimal
sensor fusion would be

(�1 �2) = (�(!2m + a1) � a2);

which is similar to what we obtained in the Desoer
example (with e = 1; f = �a2; g = �a1, and
a = 0).

If the classi�er can only determine the range which
the frequency is in, then the optimal sensor fusion
would be

� = (1 0)

Z !h

!l

�(!)T d!(

Z !h

!l

�(!)�(!)T d!)�1:

6. CONCLUDING REMARKS

We have used state space techniques to obtain
conditions for steady state input tracking for
stable linear systems. It has been shown that
these results can be used to devise a sensor fusion
scheme for input tracking. It is interesting to
consider extensions of this to multivariable and
nonlinear systems. We will consider applications
of these ideas to problems in autonomous mobile
robotics in our future research.
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