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Abstract: In this paper a new interactive tool for control education is presented. With this
tool, developed in SysQuake (Piguet, 2000), the student can easily assimilate some concepts
of introductory courses in nonlinear control such as the behaviour of piecewise linear systems,
stable and unstable limit cycles and the describing function method. Furthermore, the basis
of more sophisticated fields such as bifurcation theory applied to control systems can also be
acquired. Three application examples are included in order to show the possibilities of the
tool.
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1. INTRODUCTION

Basic skills are learned not in isolation, but in the
course of undertaking (often on a collaborative basis)
higher-level “real-world" tasks. The students assume
a central role as the active architect of his or her
knowledge and skills, rather than passively absorbing
information proffered by the teacher. The old adage
“learning by doing" is today valid. The technology
alone can never be a solution, but in the hands of a
knowledgeable teacher, appropriately designed tech-
nology can become a useful tool. The World Wide
Web and others information technology cannot be a
solution to educational needs unless the creative com-
ponent is included (Copinga et al., 2000; Poindexter
and Heck, 1999).

Because of the amazing progress in computer tech-
nology, today is possible to design “control education
tools" with the following characteristics:

� Better man-machine interaction
� Natural and intuitive graphical user interfaces
� High degree of interactivity

We are at the threshold of a new era in which ad-
vanced information technologies are finding their way
towards effective and efficient applications in control
education (Kheir et al., 1996).

2. THE ROLE OF INTERACTIVITY IN
CONTROL EDUCATION

In order to design technical systems or simply to un-
derstand the physical laws that describe their behavior,
scientists and engineers often use computers to cal-
culate and represent graphically different magnitudes.
In control engineering, these quantities include among
others: time and frequency responses, poles and zeros
in the complex plane, Bode, Nyquist and Nichols dia-
grams, phase plane, etc. Frequently, these magnitudes
are closely related and constitute different visions of
a single reality. The understanding of these relation-
ships is one of the keys to achieve a good learning
of the basic concepts and allows to the student to be
in disposition of carrying out control-systems designs
accurately.
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Traditionally, the design of the systems is carried out
following an iterative process. Specifications of the
problem are not normally used to calculate the value of
the system parameters because there is not an explicit
formula that relates them directly. This is the reason
for dividing each iteration into two phases. The first
one, often called synthesis, consists in calculating the
unknown parameters of the system taking as a basis
a group of design variables (that are related with
the specifications). During the second phase, called
analysis, the performance of the system is evaluated
and compared to the specifications. If they do not
agree, the design variables are modified and a new
iteration is performed. From the student’s perspective,
this iterative procedure can be very confusing and
laborious.

It is possible, however, to merge both phases into
one on which the result of modifying the parameters
produces an immediate effect. In this way, the design
procedure becomes really dynamic and the student
perceives the gradient of the change of the perfor-
mance criteria with regard to the elements he/she ma-
nipulates. This interactive capacity allows us to iden-
tify much more easily the compromises that can be
achieved.

Many tools for control education have been developed
over the years. Many interesting ideas and concepts
were implemented by Prof. Åström and col. at Lund.
In this context, it is well worth to stress the concepts of
dynamic pictures and virtual interactive systems intro-
duced by Wittenmark et al., 1998. The main objective
of these tools is to make students more active and
concerned in control courses.

In essence a dynamic picture is a collection of graph-
ical windows that are handled using only the mouse.
In the screen, some special elements, the active points,
can be manipulated by the students, who do not have
to learn or write any sentences. An additional help is
that the shape of the cursor changes when it is over
an active element. If the student changes any active
element in the graphical windows, automatically be-
gins an immediate recalculation and presentation to
the user. In this way perceives a feeling for how their
modifications affect to the result obtained.

Interactive tools, which are accessible to the students
at any time through the Internet, are considered a great
stimulus for developing the student’s engineering in-
tuition. These interactive tools attempt to “demystify"
abstract mathematical concepts through visualization
in specifically chosen examples. At the present time a
new generation of software packages have generated
an interesting alternative for the interactive learning
of automatic control (García and Heck, 1999). These
tools are based on objects that admit a direct graphic
manipulation. During these manipulations, the ob-
jects are immediately updated, so that the relationship
among the objects is continuously maintained. Ictools
and CCSdemo (Johansson et al., 1998; Wittenmark et

al., 1998), developed in the Department of Automatic
Control at Lund Institute of Technology, SysQuake in
the Institut d’Automátique of the Federal Polytechnic
School of Lausanne, (Piguet, 2000) and Virtual Con-
trol Lab (Sánchez et al., 2002) are good examples of
this new educational philosophy of teaching automatic
control.

3. NONLINEAR AND GLOBAL BEHAVIOR
PHENOMENA IN CONTROL ENGINEERING

Classical control theory has mainly emphasized the
use of linear analysis and design tools. There are at
least two reasons for that. Probably the most important
is that the control problem is basically a local one.
The aim is to stabilize the system at the operating
point for reasonably small disturbances. And in most
of the practical situations it is possible to linearize
the system about this operating point, and to get ac-
ceptable results from a practical point of view from
that linearized version of the problem. Furthermore,
the linear systems theory of dynamical systems is a
body of mathematical knowledge that is very well
structured, and supplies useful operative tools, that are
simple to handle (for instance, the transfer function
or the linear description in the state space). Most of
the students of control engineering only know these
linear methods, and actually with them most of the
practical problems in control analysis and design can
be dealt with. In most control textbooks the consid-
eration of nonlinearities is left as a final chapter, as
a sophisticated problem out of the main questions of
practical interest for future control engineers. It should
be added that the same happens in other branches of
engineering, where also linear methods are dominant.
For instance, in electrical engineering, that has used
traditionally linear equations, but problems such as
the tension collapse has lead to drive the attention to
nonlinear problems.

In the same line, the consideration of the nonlinear
effects in control systems deserves an special consid-
eration. Nonlinear systems present behavior modes far
more rich that the ones displayed by linear systems.
The first point to note is that structurally stable oscil-
lations (that is oscillations that are robust with regard
to small changes in parameters or initial conditions)
can only be produced by nonlinear systems. The oscil-
lations of the so called linear harmonic oscillator are
not of any practical, nor theoretical, interest. It should
be emphasized to students that whenever they found
oscillations they are in the realm of nonlinear systems.
Furthermore the bounds of the attraction basins are
associated to unstable limit cycles, a kind of phenom-
ena that does not have a parallel in linear systems
behaviour.

Another crucial difference between linear and nonlin-
ear dynamical systems is that the former ones only
show a single attractor (except in degenerate cases)



whereas a nonlinear can have many of them. Fur-
thermore, the attractor associated to linear systems
can be only a point (at infinity for unstable systems).
The nonlinear systems have many kinds of attractors:
points, closed curves (limit cycles, associated to peri-
odic oscillations) and more complex geometrical ob-
jects (fractals for aperiodic behavior, as chaos).

These questions are far from merely speculative for
control engineers. For instance, when an unstable open
loop plant is to be stabilized linear control gives mis-
leading results. Even if the plant can be stabilized at
the operating point with a linear control plant, this
control will behave adequately only locally, due to
the nonlinearity associated with the actuator saturation
(Stein, 1989; Aracil et al., 2000). This is a significant
example of the kind of situations where the classi-
cal linear control theory reaches its bounds and that
should be stressed to students.

Fortunately, for many interesting problems in control
systems raised by the presence of nonlinearities, as the
above mentioned of the unstable plant with a saturat-
ing actuator, a quite simple an powerful analysis can
be worked out. For many nonlinear problems the con-
trol engineer has the describing function as a tool to
deal with them (Atherton, 1975; Cook, 1994; Khalil,
1996; Schwartz and Gran, 2001). This method has
been used for decades by practical engineers. Even if
the results are only approximate, they are very easy to
reach and supply clues about the oscillatory and the
global behavior at a very low cost. Unfortunately, the
practical application of the describing function have
not received enough attention by producers of soft-
ware for aiding to control systems analysis and design.

The describing function method is very helpful as an
analysis tool. It does not give conclusive results, but
helps to predict some global phenomena that should
be confirmed by simulation. It is not a true analytical
tool that makes precise predictions. That is why it
should be used in interaction with some simulation
tool. But an interplay of simulation and the use of
the describing function method allows the student of
Control Engineering to reach a complete nonlinear
analysis of many control problems of a great practical
interest.

4. DESCRIPTION OF THE TOOL

In this section the new tool, programmed with SysQuake
(Piguet, 2000), is briefly described. For the sake of
brevity, only the main functions are shown.

The systems that can be analyzed have the form de-
scribed in Fig. 1. The linear element is any proper
transfer function (future versions will allow the pres-
ence of pure time delays). The nonlinear element has
the general form that appears in Fig. 2 and covers a
wide variety of piecewise linear nonlinearities with

odd symmetry 1 including some multivalued nonlin-
earities (Sridhar, 1960). Among many others the fol-
lowing nonlinearities can be covered: dead-zone, sat-
uration, dead-zone+saturation, relay and relay with
hysteresis. The configuration of the nonlinearity is
performed by means of an interactive way: the user
only has to move with the mouse the active points in
the “Nonlinear element" window of the tool, which
are represented by small circles. The active points
are identified by colors and when two or more points
collapse into a single one the resultant color is the
corresponding one to the movement that can still be
performed. As these points are moved the effect on
the other graphs can be observed. In the same window
a straight line with slope �1�k (being k the static
gain of the linear element) is plotted. In this way the
intersections between the nonlinear element and the
line are the equilibrium points of the system (Aracil et
al., 2000).

Nonlinear

element element

Linear y(t)e(t) u(t)r(t)=0

-

Fig. 1. Structure of the system.
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Fig. 2. Generic nonlinearity.

The rest of the windows of the tool are (Fig. 3):

� “Parameters": In this window the configura-
tion parameters can be defined: predefined view,
number of poles and zeros of the linear element,
scale of other graphs, final time for the simu-
lations (it can be negative in order to integrate
backwards), precision and tolerance of the in-
tegration and the computation of the describing
function.

� “Transfer function": It allows to graphically de-
fine the poles and zeros of the linear element.
They can also be defined in a dialog box.

� “Nonlinear element input" and “Nonlinear ele-
ment output": They show the input (a sinusoidal)
and the output of the nonlinearity. The former
allows to define the amplitude of the input and
the second shows its response. In both graphs the
frontiers between the linear zones are shown.

� “Real part describing function" and “Imaginary
part describing function": They show the de-
scribing function as a function of the amplitude.

1 The tool can be extended to asymmetrical nonlinearities with the
use of the dual input describing function (Cook, 1994).



Fig. 3. Graphs for the first example.

The point corresponding to the amplitude cho-
sen in the “Nonlinear element input" window is
highlighted.

� “Nyquist curve and Critical locus": It shows the
the Nyquist plot of the linear element as well
as �1�N being N the describing function of the
nonlinear element. The point corresponding to
the amplitude chosen in the “Nonlinear element
input" window is highlighted. The intersections
of both curves are predicted limit cycles.

� “Phase portrait": It shows the projection of the
trajectory into the �xi�x j� plane, where xi and x j
are two state variables that can be chosen in the
“Phase portrait parameters" window (the state
description can also be chosen among five cat-
egories). The frontiers between the linear zones
are also shown. The initial condition can be
changed with the mouse.

� “Input" and “Output": They show the input and
the output of the linear element.

All the output information is refreshed each time the
user changes something (even when he/she drags the
defining points with the mouse).

In it worthy to remark that the time integration has
been programmed in such a way that the exact solution
is used in the linear zones while the crossing points
are searched with a tolerance that is define by the user.
Therefore, the “time step" of the simulations does not
affect the accuracy of the results. Its only effect is that
the computed points will be joined with lines and if
the time step is too large the graphs will be sharp.

5. APPLICATION EXAMPLES

In this section, some examples are shown in order
to demonstrate some of the possibilities of the appli-

cation. It must be taken into account that the main
characteristic of it –the interactivity– is difficult to be
reflected in a written text. Nevertheless, some of the
potentials of the application will be illustrated.

5.1 Detection of limit cycles

This example shows the most classical application
of the describing function method: the detection of
limit cycles. Consider, as the linear part, the transfer
function

G�s� �
K

s3 �3s� s�1
and a normalized relay as the nonlinear element. As it
is well known the critical locus of a normalized relay
is an horizontal line in the Nyquist plane.

The relay is one of the possible configurations for
the nonlinearity considered in the application and can
easily be constructed. Figure 3 shows the graphs cor-
responding to this example. The “Nonlinear element
output" shows the output of the nonlinearity to a si-
nusoidal input whose amplitude can be defined by the
user in the “Nonlinear element input" window. The re-
sultant value of the describing function is highlighted
in the real and imaginary graphs of the describing
function as well as in the Nyquist plane.

Choosing appropriately the value of K (for exam-
ple, moving the red line in the “Nonlinear element"
window) an intersection between the Nyquist and the
critical locus is produced. When this intersection oc-
curs, the describing function method predicts a limit
cycle 2 . The validity of this prediction can be verified
in the “Input", “Output" and “Phase portrait" graphs.

2 Current work is been performed in order to on-line compute the
values of the amplitude and frequency of the limit cycle as well as
its stability.



With all this information as well as the possible inter-
action by the student, he/she can easily assimilate the
basis of the describing function method.

5.2 Saddle-node bifurcation of limit cycles

This example is a more sophisticated case than the
one presented in (Ortega et al., 2000). The “Nonlinear
element" window of Fig. 4 shows the type of non-
linearity considered in this case, which the user can
define easily. The critical locus has two branches as it
appears in the “Nyquist curve and Critical locus" of
the same figure. Changing the amplitude of the input
sinusoidal, the user can observe how the real part of
the critical locus goes from minus infinity to a value
greater than �1 and, then, it returns to minus infinity.
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Fig. 4. Some graphs corresponding to the second
example.

The linear part has three poles –two of them are com-
plex conjugate. The user can observe that changing
the gain of the linear part, the Nyquist plot sometimes
does not cross the critical locus, while for some other
values of the gain two intersections occur. The stabil-
ity analysis of the predicted limit cycles will reveal
that the limit cycle with smaller amplitude is unstable
while the one with larger amplitude is stable. When
the gain of the linear part decreases, the amplitudes
of the predicted limit cycles will approach. When the
Nyquist plot is tangent to the critical locus the pre-
dicted limit cycles will have the same amplitude. If,
then, the gain continue decreasing there will not be

limit cycles any more. This phenomenon follows the
archetype known as saddle-node bifurcation of peri-
odic orbits (Hale and Koçak, 1991, p. 383).

This analysis is based on the approximations inherent
in the describing function method but the user can
verify its validity clicking in the “Closed Loop" button
and analyzing the phase portrait: all the trajectories
go to zero when the value of the gain is small; on
the other hand, for large values of the gain, some
trajectories go to the origin and some others to a limit
cycle. Changing the value of the gain and the initial
conditions the predicted behaviour can be verified.

5.3 Detection of equilibrium points

As it has been stated in the previous section, the tool
can also be used to detect equilibrium points. This
example shows an intuitive case of a saddle-node
bifurcation. Consider, as the linear part, the transfer
function

G�s� �
K

s2 �5s�6
with K � 0. The nonlinear part will be a dead-zone and
a saturation as it is shown in the “Nonlinear element"
window of Fig. 5. In this case there is no intersections
between the Nyquist plot and the critical locus apart
from the corresponding to ω � 0 for large values of
K. Therefore, the describing function method does not
predict any limit cycle.
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Fig. 5. Some graphs corresponding to the third exam-
ple.



When the red line of the “Nonlinear element" window
has a large positive slope (that is, K is negative and
small) only one intersection between this curve and
the nonlinear characteristic will occur. At the same
time, no intersections appear between the critical locus
and the Nyquist plot. In this case, only the desired
equilibrium exists and it can be seen that it is (glob-
ally) stable.

On the other hand, when the red line has a small
positive slope (that is, K is negative and large) five
intersections between this curve and the nonlinear
characteristic will occur. At the same time, one in-
tersection appears between the critical locus and the
Nyquist plot corresponding to ω� 0. In this case, five
different equilibrium point exist. The desired equilib-
rium is still stable (but only locally stable) while two
couples with a stable equilibrium and an unstable one
have born. In the critical case (the intermediate value
of K for which the equilibria emerge) the equilibrium
points of each pair coincide. Therefore two simulta-
neous saddle-node bifurcation occur (the simultaneity
is due to the symmetry of the nonlinearity). All this
phenomenon can be seen moving the red line and can
be corroborated by the simulations that appear in the
“Phase portrait" graph.

6. CONCLUSIONS

In this paper, a new educational tool for prelimi-
nary nonlinear control systems has been presented.
The main characteristic of this tool, developed in
SysQuake, is its interactivity. The tool can help the
students to understand the behaviour of piecewise lin-
ear systems, the describing function method and the
basis of bifurcations theory in control systems.
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