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Abstract: This paper addresses the problem of obtaining robust and stable oscillations in
an electromechanical system. These oscillations are associated to a limit cycle that is born
through a supercritical Hopf bifurcation. The method proposed in the paper works well for
fully actuated systems, and even for certain underactuated ones. In order to illustrate the
method, we have chosen an underactuated system that is well known in the literature and
in control systems laboratories: the inverted pendulum. Actual stable and robust oscillations
have been obtained experimentally in a rotating Furuta pendulum.

Keywords: Inverted pendulum, Non-linear Oscillations, Hopf bifurcation.

1. INTRODUCTION

This paper focuses on the possibility of leading an
electromechanical system to a state of oscillation by
means of an appropriate control law. To accomplish
this, the proposed methodology matches the original
system with a generalized hamiltonian system (Van
der Schaft, 1989) that is able to exhibit robust oscil-
lations. The new system shows very interesting be-
haviors because it may undergo a supercritical Hopf
bifurcation when a parameter takes suitable values.
Therefore, the system can display robust oscillations
associated with a limit cycle. The method introduced
consists in finding a control law that matches the open
loop system with that desired behavior.

In a previous paper (Aracil et al., 1998) a Hopf bi-
furcation was detected in an inverted pendulum. How-
ever, the limit cycle born through this bifurcation had
no physical meaning as it was associated to positive
damping. In the family of systems considered in the
present paper the limit cycle is easily implementable
in an experimental framework.

The method used to get the control law belongs to
the family of energy shaping methods (Ortega et
al., 2001). Currently, these methods try to find control
laws that drive the controlled system to an isolated

equilibrium point. However, here our goal is to reach
a closed curve (a limit cycle) that produces a stable
oscillating behavior. It is worthy to mention that this
limit cycle is born through a supercritical Hopf bifur-
cation. Therefore, for certain values of the bifurcation
parameter, the system has an attractor point, which is
the case normally considered in conventional energy
shaping control systems. Nevertheless, for other val-
ues of that parameter the limit set of the dynamical
system changes to a limit cycle and, therefore, the
system oscillates in a stable and robust way.

Other attempts have been reported to obtain oscilla-
tions in nonlinear systems, see (Fradkov and Pogrom-
sky, 1998) and references therein. However, to the
best of our knowledge, the generalized hamiltonian
systems formalism has not been considered in the lit-
erature to deal with limit cycles.

The method proposed in the current paper works well
for fully actuated second-order systems, and even for
certain underactuated ones. In order to illustrate the
method we have been chosen an underactuated system
that is well known in the literature and in control
systems laboratories: the inverted pendulum.

The paper is organized as follows. In Section 2, a gen-
eralized hamiltonian system that exhibits a pertinent
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supercritical Hopf bifurcation is introduced. This sys-
tem will be used as the desired closed loop behavior.
In Section 3, a control law that matches the behavior
of the pendulum on a cart with that desired system
behavior is obtained. The case of the rotating Furuta
pendulum is also analyzed both by simulation and on
an experimental framework. In Section 4 conclusions
are given. Finally, the analysis of the limit cycle is
performed in the Appendix.

2. OSCILLATIONS IN A GENERALIZED
HAMILTONIAN SYSTEM

In this section a generalized hamiltonian system (Van
der Schaft, 1989), which presents a supercritical Hopf
bifurcation, is introduced. The generalized hamilto-
nian system formalism is particularly well suited to
solve the problems of designing controllers by energy
shaping. With this formalism the desired closed loop
behavior can be stated as follows. Define the hamilto-
nian function

Hd �
1
4
�ω2

c x2 � ẋ2�2� µ
2
�ω2

c x2 � ẋ2��

Making x1 � x and x2 � ẋ, using the generalized
hamiltonian system formalism and including damping
it is obtained

�
ẋ1
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being ka � 0 the damping coefficient.

As Dx1
Hd � ω2

c x1�ω
2
c x2

1 � x2
2 � µ� and Dx2

Hd �

x2�ω
2
c x2

1 � x2
2�µ�, the system can be expressed as

ẍ ��ω2
c x� ka�ω2

c x1 � ẋ�µ�ẋ� (2)

This is a very interesting system which undergoes a
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values of parameter µ is shown in Fig. 1. The shape of
Hd�x1�x2� can be obtained by means of a ellipsoidal
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Fig. 2. Hamiltonian function for closed-loop system.
The upper surface with a single minimum point
corresponds to µ � 0; and the lower surface
with a minimum set formed by a closed curve
corresponds to µ � 0.

rotation of these curves (Fig. 2). From this figure it
is clear that for µ � 0 Hd has a single minimum
at the origin, but for µ � 0 the minimum turns into
a maximum, and the minimum now is reached in
a closed elipsoidal curve that surrounds the origin.
These shapes give an intuitive geometrical insight
into the expected system behaviors. They provide the
desired energy shape that will be the objective of our
control problem.

The linearization of system (1) at the origin is given
by

d
dt
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whose characteristic polynomial is λ 2 � kaµλ �ω2
c

and the corresponding eigenvalues are

λ1�2 �
kaµ�

�
�kaµ�2�4ω2

c

2
�

Then, for µ � 0, we have Re�λ � � 0 and the origin is
stable; for µ � 0�λ �� jωc and the origin is a center;
and for µ � 0, Re�λ � � 0 and the origin is unstable.
Therefore the system has a single equilibrium at the
origin for µ � 0, and for µ � 0 this equilibrium be-
comes unstable and the trajectories tend to a limit cy-
cle. Therefore, a supercritical Hopf bifurcation (Hale
and Koçak, 1991; Kuznetsov, 1995) is produced for
µ � 0, where the stability of the origin changes from
stable to unstable.

The conditions for a Hopf bifurcation are fulfilled
since

dRe�λ �µ��
dµ

���
µ�0

�
ka

2
�� 0�

The initial period (of the zero-amplitude oscillation) is

T0 �
2π
ωc

�



This gives an approximate value of the period of the
expected oscillations, approximation which is reason-
ably valid for small values of µ .

It is interesting to note that for ka � 0 system (2)
reduces to ẍ � �ω2

c x that has a state portrait formed
by cycles that fill the whole state space. However these
oscillating behaviors are not structurally stable. The
effect of the damping is just to select from all these
cycles a single one given by a limit cycle that produces
stable and robust oscillations.

The fact that there is actually a limit cycle for µ � 0
is easily checked by the Poincaré-Bendixon criterion.
Consider in the �x1�x2� plane the family of curves
ρ2 � ω2

c x2
1 � x2

2, where ρ � 0 is a radius-like coor-
dinate. Then, it is straightforward to show that

ρρ̇ ��ka�ρ2�µ�x2
2

which means that for ρ �
�µ, ρ̇ � 0 and then ρ

grows. On the other hand for ρ �
�µ , ρ̇ � 0 and

then ρ decreases. The curve corresponding to ρ � 0 is
invariant (ρ̇ � 0) and, therefore, is a limit cycle. This
limit cycle corresponds to the closed curve defined by
the minimum of Hd in Fig. 2. For a more detailed
discussion of this limit cycle see the Appendix.

3. APPLICATION TO THE PENDULUM ON A
CART

The system introduced in the previous section, which
presents robust oscillations, suggests a method to get
controlled systems that fit into it. The aim is to design
a controller that matches the original open loop system
with the behavior given by Eq. (1). The method will
be presented by its application to the pendulum on
a cart, which is one of the most studied cases of
underactuated control systems.

The main physical parameters of the system are M
and m, which stand for the masses of the cart and the
pendulum respectively, and l that is the distance from
the pivot of the pendulum to its center of mass. For the
sake of completeness the equations are included. The
Lagrangian of the pendulum on a cart is given by

L �
1
2
�α θ̇2 �2β cosθθ̇ ṡ�γṡ2��ω2

0 cosθ� (4)

where θ is the angle of the pendulum with respect to
the upright position and s is the linear displacement
of the cart. The parameters are α � ml 2, β � ml,
γ � M �m, and ω2

0 � mgl. From Eq. (4) the Euler-
Lagrange equations become

α θ̈ �β cosθ s̈�ω2
0 sinθ � 0 (5)

β cosθθ̈ �γs̈�β sinθθ̇2 � u� (6)

where u is the force applied to the cart.

In the following, a control law u�θ� θ̇�s� ṡ� will be
obtained so that system (5) and (6) matches the desired

closed loop system given by Eq. (1). In this way, the
pendulum will oscillate around the upright position
when µ � 0.

The first step is to partially linearize (Khalil, 1996) the
open loop system given by Eqs. (5) and (6). Equation
(5) can be written as

θ̈ �� 1
α
�β cosθ s̈�ω2

0 sinθ�� (7)

which together with (6) leads to

γs̈�
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α
�ω2
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(8)
and so to

s̈
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α
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(9)
Making s̈ � v in this last equation it yields

v �
�βω2

0
α sinθ cosθ �β sinθθ̇2 �u�

γ� β2 cos2 θ
α

	 (10)

which defines a partial linearizing controller. This
controller converts Eqs. (5) and (6) into

α θ̈�ω2
0 sinθ ��β cosθv (11)

s̈ � v� (12)

which are the partially linearized form of the equations
of the pendulum on a cart. The form of these equations
is very nice as variables θ and s have been decoupled.
The problem of controlling θ has been made indepen-
dent of the one of controlling s.

The desired closed loop behavior is given by Eq. (2),
where x should be replaced by θ . The open loop is
given by Eq. (11), that can be written as

θ̈ �
ω2

0

α
sinθ� β

α
cosθv� (13)

Matching the open loop with the desired closed loop
behaviors (Eqs. (13) and (2) respectively) yields

�ω2
c θ�ka�ω2

c θ2 � θ̇2 �µ�θ̇ �
ω2

0

α
sinθ� β

α
cosθv�

which leads to

v �
α

β cosθ

�
ω2

c θ �
ω2

0

α
sinθ

� ka�ω2
c θ2 � θ̇2 �µ�θ̇

	
� (14)

This law is not valid at θ � �π�2, but it is for all
θ ���π�2.

Therefore, applying control law (14) to system (11)
oscillations ruled by Eq. (2) are obtained. It should
be noticed that the pendulum oscillates around the
upright position.



3.1 Oscillations in the controlled variable

So far, only Eq. (11), which is related with variable
θ , has been taken into account. When the obtained
control law (14) is applied, the movement of the cart
is given by

s̈ �
α

β cosθ

�
ω2

c θ �
ω2

0

α
sinθ

� ka�ω2
c θ2 � θ̇2 �µ�θ̇

	
� (15)

By simulation, it can be seen that variable s presents
oscillations together with a drift.

In order to eliminate such drift, the following modifi-
cation of control law (14) is proposed

v �
α

β cosθ

�
ω2

c θ �
ω2

0

α
sinθ

� ka�ω2
c θ2 � θ̇2 �µ�θ̇

	
� ksṡ� (16)

with ks � 0.

Figures 3 and 4 show the results of the simulations
with µ � �15, ka � 0�2 and ks � 0�01. The systems
parameters were chosen as: M � 0�44 Kg, m � 0�14
Kg and l � 0�215 m. This behavior is satisfactory
since both variables θ and s oscillate without drift.
Nevertheless, variable s oscillates around a position
that has not be pre-specified.

Another interesting result is obtained for negative
values of µ . In this case control law (16) stabilizes the
pendulum at the upright position.
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Fig. 3. Pendulum on a cart. Simulations with initial
conditions �x1�x2�x3� � �θ� θ̇� ṡ� � �1�1��1�.

3.2 Extension to the Furuta pendulum

The same procedure can be applied to the case of the
rotating Furuta pendulum (Åström and Furuta, 1996).
For this last pendulum, matching the open and closed
loop equations we have
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Fig. 4. Phase portraits of the pendulum on a cart.
Simulations with initial conditions �x1�x2�x3� �
�θ� θ̇� ṡ� � �1�1��1�.
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Therefore, the control law is

v �
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β cosθ
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c θ �
ω2
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� ka�ω2
c θ2 � θ̇2 �µ�θ̇

	
�

1
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that is, the same law as in Eq. (14) but with the
additional term 1

β sinθϕ̇ 2, which can be interpreted
as a cancellation of the perturbation introduced in the
rotating pendulum by the rotating effects.

In order to eliminate the drift the following law is
proposed

v �
α

β cosθ

�
ω2

c θ �
ω2

0

α
sinθ �

ka �ω2
c θ2 � θ̇2 �µ�θ̇

	
�

1
β

sinθϕ̇ 2 � kϕ ϕ̇ � (18)

which also gives satisfactory results in simulations and
experiments. In the following, the results of two real
experiments are presented. Figures 5 and 6 show the
results of experiment 1, in which the initial value of
parameter µ is �15 and at t � 3 sec. it is changed to
15. It can be seen that for this last value of µ the sys-
tem begins to swing and reaches a stable oscillation.
The period is T0 � 0�5 sec. Figure 7 shows a sequence
of actual pictures obtained by experimentation corre-
sponding to one period of the oscillations.

The objective of experiment 2 is to show the robust-
ness of the oscillations. In this experiment an external
disturbance on the system is introduced at t � 5 sec.
The results are shown in Figs. 8 and 9. As in the case
of the pendulum on a cart, for µ � 0 control law (16) is
able to stabilize the pendulum at the upright position.



Fig. 7. Sequence of pictures showing one period of the oscillations for a experiment 1 when µ � 15. The period
is T0 � 0�5 sec.
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Fig. 5. Time response for experiment 1.
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Fig. 6. Phase portraits for experiment 1.

4. CONCLUSIONS

In this paper, we have presented a technique for ob-
taining stable and robust oscillations around the up-
right position in an inverted pendulum. To accomplish
this a control law has been introduced that drives the
system to a stable limit cycle. This control law belongs
to the family of the energy shaping methods. The
limit cycle is associated to the occurrence of a Hopf
bifurcation in a generalized hamiltonian system. The
results have been checked both by simulation and by
experimentation on an actual rotating pendulum.
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Fig. 8. Time response for experiment 2. A disturbance
is added at t � 5 sec.
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APPENDIX

Equation (2) can be written as

ẋ1 � x2 (19)

ẋ2 ��ω2
c x1� ka�ω2

c x2
1 � x2

2�µ�x2� (20)

This system has as limit sets the point �x1�x2� � �0�0�
and, when µ � 0, the closed curve Γ � �x1�x2�ω2

c x2
1 �

x2
2 � µ	. In the following, it is shown that curve Γ is a

stable limit cycle for µ � 0. Applying the quasi-polar
transformation

x1 �
ρ
ωc

cosη x2 � ρ sinη

to Eqs. (19) and (20) yields

ρ̇ cosη �ρ sinη η̇ � ωcρ sinη
ρ̇ sinη �ρ cosη η̇ ��ωcρ cosη � ka�ρ2�µ�ρ sinη

Adding the first equation multiplied by cosη , to the
second one multiplied by sinη yields

ρ̇ ��ka�ρ2�µ�ρ sin2 η (21)

Similarly, adding the first equation multiplied by sinη ,
to the second one multiplied by�cosη yields

η̇ ��ωc� ka�ρ2�µ�ρ sinη cosη (22)

From Eq. (21) it is clear that ρ 
 �µ . Furthermore
Eq. (22) shows that this happens in a monotone form.
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