
REACTIVE PATH PLANNING FOR ROBOTIC ARMS WITH MANY DEGREES OF FREEDOM IN
DYNAMIC ENVIRONMENTS

Margarita Mediavilla, José L. González, Juan C. Fraile, José. R. Perán

Departamento de Ingeniería de Sistemas y Automática, E.T.S.I.I.
 Universidad de Valladolid. Spain.

e-mail:marga@eis.uva.es

Abstract: It is well known that path planning for robots with many degrees of freedom is a
complex task. That is the reason why the research on this area has been mostly restricted
to static environments. This paper presents a new method for on-line path planning for
robotic arms in dynamic environments. Most on-line path planning methods are based on
local algorithms that end up being inefficient due to their lack of global information (local
minima problems). The method presented in this paper avoids local minima by using a
two stage framework. The robots react to dynamic environments using a local and
reactive planning method restricted to a subset of its configuration space. Since the subset
has few degrees of freedom the computational cost of the on-line stage is very low. An
off-line stage chooses the subset of the configuration space that minimizes the probability
of blockades and inefficient motions. Copyrigh ©t 2002 IFAC

Keywords: path planning, robotic manipulators, configuration space.

1. INTRODUCTION

Robot path planning has been an active area or research
over the last 40 years. It is well known that the
complexity of path planning tends to become enormous
when the number of degrees of freedom of the robot is
large (5 to 7 d.o.f). Few approaches deal with robots
with many d.o.f. in dynamic environments. By dynamic
environment we understand a workplace with still and
moving obstacles where the position of the obstacles at
each moment can be known, but where the entire
trajectory cannot, either because of external unknown
perturbations, or because it is influenced by our own
path planning.

Since most path planning is designed for static
environments, most robot manipulators are restricted to
pre-calculated trajectories and rigid timings, and their
behavior is non reactive. Increasing the reactivity of
robot manipulator would have important advantages.
The robots could be less dependent on pre-calculated
trajectories and do their path planning on-line, they
could reecho to unexpected events such as moving
obstacles or faulty situations, and they could move
without a previous model of their environment, based
only on sensor information (such as mobile robots do).

Path planning methods based on probabilistic roadmap,
random searches, the sequential framework, hierarchical
searches, or harmonic functions (Gupta and Pobil, 1992)
deal successfully with complex problems in reasonable
computing times, but most of these methods cannot be
applied to dynamic environments.

Path planning for dynamic environments is often based
on local methods. The earliest approach is the potential
field method by Khatib (1986) whose main drawback is
the generation of local minima. Local minima-free
potential fields seem to be impossible to build based
only on local information (Gupta and Pobil, 1992). One
interesting way of solving this problem is presented by
in the elastic band framework by Quinlan and Khatib
(1993), which combines local and global information.
The drawback of the elastic bands method is that a
collision-free path between initial and final
configurations must always exist. In (Hamilton and
Dodds, 1998) there is a reactive approach based on a set
of behaviors, that ends up having a problem similar to
the local minima of potential fields. Max and Xianyi,
(1998) present a method based on neural networks. The
method opens up an interesting field, but the authors do
not train the net, therefore they might find local minima
problems. Mataric (2001) has worked on path planning
for humanoid robots with many degrees of freedom. Her
approach reduces the effective number of degrees of
freedom of the robots, using a human to teach the robot.
This paper presents a method for path planning for
robots located in dynamic environments, also seen in
(Mediavilla et al., 1998; Mediavilla et al., 2001). The
method is tested on a system of three five-link robots.

1.2 Description of the method.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

The path planning method we present in this paper is
based on what we call motion strategies. These are
simple and effective ways of moving a robot. Motion
strategies are implemented by restricting the path search
to a subset of the configuration space (C), of the robot,
what we call reduced subspace (R-subspace) or CR.
One single motion strategy cannot solve all the task
assigned to a robot, therefore our analysis is based on
grouping the tasks that the robots perform into what we
call motion problems. Motion problems are general
types of tasks that can be solved using the same R-
subspace. We need to ensure that this reduction is
correct, therefore our method is completed with an off-
line pre-planning stage that chooses the R-subspace that
optimizes the motion.

robot 1

robot 3
table 13

table 12

table 23

PROBLEM 2A

robot 2
robot 1

robot 3
table 13

table 12

table 23

PROBLEM 3A

robot 2

robot 1

robot 3
table 13

table 12

table 23

PROBLEM 2B

robot 2 robot 1

robot 3
table 13

table 12

table 23

PROBLEM 2C

robot 2

Figure 1. Motion problems.

Thus, our method has the following stages:

• off-line stage. This stage decides which strategies
are most suitable for the motion of the robot.

• On-line stage. When the robots move they search
their path inside the R-subspace chosen in the off-
line stage. Since the R-subspace has a low
dimension the path planning algorithm is very fast
and reactive.

In this first approach to path planning based on strategies
we have used R-subspaces that only have two degrees of
freedom. Despite their simplicity these subspaces can
solve some interesting problems in a very effective way.
There might be motion problems that cannot be solved
using a R-subspace, or whose probability of success
using a R-subspace is very low. In those cases out off-
line analysis would still be useful to be ensure that more
complex planners are needed.

One of the key issues related to path planning is weather
a method is complete or not. Since we are reducing the
number of degrees of freedom of the search space, it is
very likely that our algorithm is not complete. But, on
the other hand, we are dealing with moving and
unknown obstacles, therefore, we can always find

obstacles that make our way impossible, no matter what
path planning we use! When we deal with path planning
for uncertain environments we might need to forget
about mathematically complete algorithms and search
for just a “good planner”. The researchers that make
soccer competitions of mobile robots do not search for a
path planning method that guarantees that our team is
going to win 3-0 to the opposite team, they just deal with
the uncertainties of the real world as well as they can.

This paper describes our approach to path planning
based on motion strategies and its application to a multi
robot system of three five-link manipulators. Section 2
describes the basic features of the method. In section 3
the off-line analysis stage is described, while section 4
describes the on-line stage. Section 5 shows some results
of the application of this method. Finally the conclusions
are drawn in section 6.

2. MOTION PROBLEMS, STRATEGIES AND R-
SUBSPACES.

2.1 Definition of strategies and R-subspaces.

The R-subspaces we have chosen are linear and two
dimensional subsets of C (configuration space). Since all
the motion of the robot must be done inside them, the
initial qI and final qF configurations of the robot must be
contained in CR. R-subspaces will be characterized by a
base of two vectors u1 and u2:

{ }21/ uyuxqqCqC IR ++=∈= (1)

where x and y are independent variables and u1 is a
vector common to all possible R-subspaces, that points
out from the initial to the final configuration:

() IFIF qqqqu −−=1 (2)

The vector u2 is the one that determines the strategy of
the robot. For example, in a PUMA type robot with six
revolute joints, if u2 =(0 1 1 1 0 0) the motion along u2
implies that the second, third and fourth joints of the
robots rise while the rest remain unchanged. This is what
we call “go-up” motion. Motion inside CR is, therefore, a
combination of movements towards the goal (parallel to
u1), and “go-up” movements (parallel to u2).
Since we are working with robots with n degrees of
freedom and our R-subspaces are two-dimensional, we
have n-2 degrees of freedom to choose the vector u2 and
therefore, the strategy of the robot. To obtain an
orthonormal basis we would need u2 such that:

u2 · u1=0 (3)
|| u2 ||=1 (4)

Condition (3) is fulfilled if u2 is obtained as a linear
combination of an orthonormal basis of the null space of

vector u1. Therefore, we may find a basis of the null
space with n-1 vectors vi i=1,...n-1 such that:

vi · u1=0 (5)

In our five link robots for example, we have only used
the first four degrees of freedom of the robot, since the
last one is the rotation of the gripper that does not need
to be taken into account for collision avoidance (the
robots do not carry large objects). Therefore our u2 is a
linear combination of the three vectors of the base of the
null space of u1:

u2= a · v1 + b · v2 + c · v3 (6)

Equation (4) poses one extra restriction, since we are
only interested if the relative size of the elements of
vector u2, not in its modulus. We may, therefore, give an
arbitrary value to one, lets say a=1, and choose
arbitrarily the rest of the parameters b, and c. These two
parameters define all the possible directions of u2,
although the sign of the first element might be positive
or negative. Therefore we may define u2 using three
parameters:

222
1 ß++

⋅+⋅+=
α

βαλ)(321 vvv
u

(7)

Where λ= ±1 is what we call the local direction of the
strategy and α and β have arbitrary values. We call
strategy the set of parameters Λ = (α, β, λ). The
physical meaning of these parameters depends on the
basis vi of the null space that we choose. When a robotic
system is composed of several robots, one has to think
about a global strategy for the system. This strategy
would be describe by the parameters of the m moving
robots:

 Λ = (α1, β1, λ1, α2, β2, λ2.....αm, βm, λm) (8)

This definition of vector u2 is not the only one we may
choose, since any pair of vectors – as long as they are
not parallel— define a linear 2D subspace in C. A
strategy is similar to, but not exactly the same, as an R-
subspace. One strategy might lead to two different R-
subspaces if the initial and final configurations of the
robots are different.

2.2 Characterization of motion problems.

The definition of motion problems depends on the
purpose of our system and must be done by the user. To
illustrate the idea of the motion problems we shall use
the multi robot system where we have applied our
method (Mediavilla et al., 1998; Mediavilla et al., 2001).
It is composed of three Scorbot-er IX robots with five
degrees of freedom each, and several working platforms
(see figure 1). Each robot can access two side working

platforms and the central table. This system has a
communications and control structure that enables joint
operation. The control system is located in three
computers that are connected to each other by Ethernet
and to each one of the robots controllers using the serial
port. The control software gets the values of the
encoders of the robots and sends to each robot the
desired link positions at regular intervals. The tasks
assigned to the system are mainly pick-and-place
operations between the working platforms. Only gross
motion is considered, and it is assumed that no joint
manipulation of pieces is needed. In our multi robot
system we have defined the following motion problems
(see figure1):

? Problem 2A. Two robots move between the tables
that are located at their sides. They cross traveling
in the same direction.

? Problem 2B. Two robots move between the tables
that are located at their sides. They cross traveling
in opposite directions.

? Problem 2C. One of the robots moves between side
tables and the other moves between one side table
and the central table

? Problem 3A. Three robots move between side tables
traveling all of them in the same direction.

We must take into account that these motion problems
are general types of conflicts. They do not represent the
motion the robots from one specific configuration in one
table to another configuration in another table. These
motion problems represent any kind on task that the
robots might do between working areas. The initial and
final configurations of the robots might vary inside the
initial and final areas, and the relative delay of the robots
too. This way the robots might find many different types
of conflicts in the same motion problem.

3. OFF-LINE STAGE

The first part of our off-line stage is the choice and
definition of the motion problems, which was discussed
in section 2. The second part is the evaluation of
strategies in terms of how appropriate they are for a
motion problem. This process is basically an
optimisation that uses one evaluation index. We have
used two indexes: one is what we call Estimation of the
Probability of Faults, (EPF), and the other is the average
time spent in several tasks. Both are described in section
3.1, while the optimisation process is described in
section 3.2. The optimisation process is described in
figure 2.

3.1 Estimation of the Probability of Faults (EPF) and
average time of a strategy

The purpose of the EPF is finding an appropriate index
to evaluate strategies. We define fault in this context as a
deadlock or a livelock of the robotic system.

We will call P(Λ) the estimation of the probability of
having a fault when using strategy Λ on a certain motion
problem. This estimation is based on a simulation of
the robotic system that imitates its real operation. The
simulation of the system performs N different tasks that
belong to the motion problem, and counts the number of
faulty tasks, r. This experiment is binomial and the real
probability of faults p(Λ) can be estimated by the
sampling probability P (Λ)=y=r/N. We know that a task
is faulty when the time needed to perform it is larger
that a certain amount. Let us call t1k, … , tj

k,..tm
k the time

spent by each one of the robots j=1, 2,m, in each one
of the tasks k=1....N. If tj

k = tmax we set tj
k = tmax and

report a fault of task k.
The other index that we use is the average time spent by
the three robots solving a motion problem with one
strategy. The process that leads to the estimation of these
indexes for the strategy Λ is:

1. find Nk tasks for each one of the k robots involved
in the motion problem,

2. run the simulation of the system until all the task of
all the robots are completed

3. count the time spent in each one of the tasks: ti
k,

i=1,...Nk and the number of faulty tasks rk
4. calculate the average global time of the simulation:

T(Λ)=(∑ k ∑ i=1
Nk ti

k) /N, where N=∑ k Nk . T(Λ) and
P(Λ)=y=r/N (the EPF) are the optimization indexes.

If the experiment we carry out is binomial we can set
confidence intervals to the estimation of P(Λ) and T(Λ).
This implies that the N observations must be
independent from each other. The experiments we do are
a continuous simulation of the operation of the system,
therefore the tasks might be correlated to each other.
We have used two ways to break this dependency: the
first one is choosing the initial and final points of the
motion of each robot randomly inside the working area.
Another source of randomness is introduced by making
the robots wait a random time before starting a new task.
A correlation analysis of the times tj

k gives us
information about how correlated these experiments are.

3.2 Optimization of strategies

The EPF analysis gives us a criterion to decide whether
one strategy is better than others, but the ultimate goal of
our analysis is the choice of one strategy (or a reduced
set of strategies) that solve each motion problem. Since
the number of parameters that define one strategy
involving m robots with n degrees of freedom are (n-
2)·m, this is a complex problem that grows exponentially
with the number of degrees of freedom of the robot. One
of the approaches to this optimisation problem we have
tried involves the use of non-linear programming
techniques. The function to minimise would be the
average time spent by the m robots in N tasks:

T(Λ)=Σj=1
mΣk=1

N tj
k (9)

This optimisation should avoid those strategies that have
faults, since they have a large value of the task time
tj

k=tmax. It also avoids those strategies that are slow, and
therefore not very efficient. Since the function that we
want to minimise is, probably, a highly non-linear and
not analytical function the optimisation method that we
have decided to use is the flexible polyhedron search --
simplex method by Nelder and Mead (Lemeshow et al.,
1990)-- which does not use the derivatives of the
function. The optimisation of this function is
problematic, because we cannot guarantee a global
optimum, since local minima will probably exist.

The other approach we have used is based on choosing
an arbitrary set of values for the parameters α, β, λ, ...
of Λ and testing all the possible combinations of these
values. This approach is simply a set of trials, that are
going to be a good starting point and give us interesting
information about our strategies. The results described in
section 5.

4 ON-LINE STAGE

The on-line stage of our method is based on moving the
robots inside CR using a reactive and local algorithm.
We have used a simple algorithm based on three
behaviors:

1. Go to the goal. This is the default behavior of the
robots. It is used when the robot does not detect
obstacles closer than a certain distance, h. If the
configuration of the robot at moment k is qk, the
next one will be: qk+1 = qk + ∆·uk

F , where uk
F

=qf-qk/|| qf - qk || points in the direction of the goal,
and ∆ is a scalar fixed step.

2. Avoid obstacles. This behavior is used when the firs
one cannot be followed. The robot checks the
neighbor configurations of qk according to vectors
uk

F and uk
T and following a local direction, (for

example right). The neighbor configurations would
be: qk + ∆·uk

F , qk + ∆·uk
F - ∆·uk

T, qk
 - ∆·uk

T, qk -
∆·uk

F - ∆·uk
T

 and qk - ∆·uk
F . The robot moves to the

neighbor configuration that is closest to its objective
but whose distance to the obstacle is greater than h.
Vector uk

T is perpendicular to uk
F and belongs to

CR. This vector defines one of the local directions1.

3. Change local direction. If the previous behavior
cannot be done, the robot changes its local direction
by doing uk

T = -uk
T.

1 uT is perpendicular to uF and belongs to CR. It can be easily
calculated if uF is defined in terms of the base u1 and u2. For
example, if uF =a u1 + b u2, the vector uT

 = -b u1 + a u2 is
perpendicular to uF

 and indicates one of the possible local
directions.

OPTIMIZATION OF STRATEGIES

final value Λopt

choose Λ candidate

EVALUATION OF INDEX t (Λ)

simulate system’s
performance with Λ

in those N tasks

choose N random tasks

calculate average time t (Λ)

is Λ good enoguh?

yes

no

Figure2: Off-line optimization of strategies

5. EXPERIMENTS AND RESULTS

The experiments that we have performed in our system
are based on motion problem 2 A and motion problem 3
A. In our multi robot system composed of three
Scorbot-er IX robots the robots basis are 1.1m apart
from each other while the maximum reach of the gripper
is 0.85m. The five links of the robots are all revolute,
since it is a PUMA type robot. The tasks of the robots
are based on problem 2 A and problem 3 A. The robots
move back and forth between their side tables, and the
initial an final points of their motions vary randomly
inside a sphere in configuration space that corresponds
to a movement of the gripper of the robot of εalea=0.1m.
The robots wait a random time before doing the next
tasks. Those delay times are obtained using a random
exponential distribution of mean µexp=10. A task is
considered faulty if the robot takes more than 200 times
the time it would take to do the tasks without obstacles.
ε=0.05m is the spatial resolution used in our path
planning.

 Correlation analysis. In order to know if EPF analysis
is correct we have tested problem 2A using one
particular strategy. We have obtained similar results in
all the strategies we have tested. The strategy chosen
leads to the following vectors u2

i for robots i=1, 2 of the
R-subspace:

u2
1 = (0.35, 0.70, 0.37, 0.47, 0) for robot 1

u2
2 = (-0.2, 0.85, -0.28, -0.37, 0) for robot 2

Therefore robot 1 follows a “go-up” strategy, while
robot 2 “bends-up- hand down”. In table 1 we can see
the results of the correlation analysis of the simulation f

N=600 tasks of problem 2 A. We can see that the
correlation is not high, therefore our experiments can be
considered independent from each other and our
estimation of the probability of faults and the average
time is acceptable.

Table 1. Correlation analysis of a simulation of N tasks

PROBLEM 2A (random tasks) N=600,ε=0.05m,
εalea=0.1m, µexp=10

ROBOT 1 (0 faults) ROBOT 2 (0 faults)

Mean tk
1 50.19 points Mean tk

2 47.79 points

Std tk
1 18.0 Std tk

2 17.8

Xcorr tk1 tk
1

First 6
terms
normalizad

-0.11, 0.09, -
0.02, 0.005,
0.0016, 0.045

Xcorr tk2 tk
2

First 6 terms
normalizad

-0.11, 0.144,
-0.11, 0.028,
-0.10, 0.070

Correlation
tk

1 tk
2 0.047 2/vN 0.08

Optimization with Simplex method. The results of one
optimization of T(Λ) using the simplex method by Nead
and Melder as programmed in MATLAB (Himmelblau,
1972) can be seen in table 2. These optimizations lead us
to coherent results (the optimization converges), but the
optimum strategies were never too far away from the
initial value from where the optimization started. This is
probably due to the presence of local minima in the
index function, although it could also mean that the
simplex method is not adequate for this problem

Systematic trials. Since the simplex method did not seem
to converge to strategies that were good global
optimums we performed a systematic search that
explored all the space of reasonable values of Λ. We
chose three values of α (-2 , 0 and 2) and four values of
β (-2.5, -1, 1, and 2.5) plus the two values of the local
direction λ=±1, and look at all the combinations of those
values.

Table 2. Results of the optimization of one strategy
using simplex method

strategy ROBOT
1: fold

ROBOT 2:
go up

Λinitial 0, -2.5 2, –2.5
Λoptimum -0.04, -

2.7
2.34, -2.46

no. steps 200

Time of
optimization

100 minutes

Tolerance of index in
optimization

0.5 steps

T(Λini) 101 steps
T(Λopt) 94.5 steps

N 600 600
faults 0 0

All these combination give us 576 strategies. Since the
time spent doing a simulation of 600 tasks with two
robots is around 30 seconds, trying all the strategies
takes around 5 hours. We have simulated one set of 300
tasks on each one of those strategies, plus two sets of
1800 tasks. 47 of these strategies do not detect any fault
in any of the simulations. Therefore, using the notation
of section 4.2 we have a fault rate P (Λ) = r/N =0 / 4200
=0.

We have chosen the following of 6 strategies as the most
appropriate for problem 2 A, all of them have no faults
in all the tasks. The average time spent by the robot in
them is shown in parenthesis:

• up h++ vs. up h - - (92.5) robot 1 go up with hand
up – robot 2 go up hand down

• up h+ vs. fu h – (95.6) robot 1 go up with hand
up – robot 2 fold up hand down

• up h- vs. fu h - - (96.5) robot 1 go up with hand
down – robot 2 fold up hand down

• up h+ vs. do h ++ (90.2) robot 1 go up with hand
up – robot 2 go down hand up

• up h + vs. do h – (87.6) robot 1 go up with hand
up – robot 2 go down hand down

• up h- vs do h + (86.0) robot 1 go up with hand
down – robot 2 go down hand up

The best strategies are those where robot 1 goes up
while robot 2 goes down or folds up. These strategies
seem to be very reliable for motion problem 2 A,
therefore we have considered that further optimization
was not needed.

 Three robots The results obtained with problem 2 A
have been extended to problem 3A, that deals with three
robots that go back and forth between side tables and

Table 3. Results of the best strategies for problem 3 A.

Problem 3 A. Three robots between side tables.
600 tasks, ε=0.05 m, εalea =0.1 m, µexp=10

Strategy u2 faults T(Λ)

up h+
vs.

 fu h- vs.
 up h-

u2, robot1=(0.014 0.93 0.23 0.25 0)
u2,robot2=(0.028 0.55 -0.65 –0.51 0)
u2,robot3=(0.014 0.93 0.23 -0.25 0)

4 168

up h- vs.
fu h – vs.
up h +

u2,robot 1=(0.014 0.93 0.23 -0.26 0)
u2,robot2=(0.012 0.24 -0.28 -0.93 0)
u2,robot3=(0.014 0.93 0.23 0.26 0)

5 171

up h+
vs.

do h +
vs.

up h +

u2,robot1(-0.01 0.37 0.89 0.26 0)
u2,robot2=(0 -0.64 –0.16 0.74 0)
u2,robot3=(0 0.37 0.89 0.26 0)

9 174

start crossing in opposite directions. We have checked
the combinations of the strategies that detected no faults
in problem 2 A. The results are not as good as the ones
obtained with problem 2 A, but the failure rate is still
very low. The results can be seen in table 3.

6. CONCLUSIONS

A new on-line path planning method for articulated
robots has been presented in this paper. It deals with a
problem that has not been fully solved to date: the
motion among moving (and unpredictable) obstacles.
The planner is a combination of local and global
methods: the path of the robot is calculated in a on-line
stage using local information, but an off-line stage
shows which strategies of motion are most successful for
the type of problems that the robot would have to face.
This method has been applied to a multi robot system
composed of 5-joints robots. The results show on-line
path planning for two 5 d.o.f. robots with a very high
success rate.

REFERENCES
Gupta, K., Pobil, A. P. (editors) (1998).Practical motion

planning in robotics: current approaches and future
directions. John Willey and Sons Ltd.

Hamilton, K., Dodds, G.I. (1998). Reactive Planning of
Robot Arms in Single and Cooperative Tasks.
Proceedings of the IEEE International Conference on
Robotics and Automation, pp 336-340.

 Himmelblau, (1972). D. M. Applied Nonlinear
Programming. Mc Graw Hill, 1972.

Khatib, O. (1986). Real-time obstacle avoidance for
manipulators and mobile robots. Int. J. of Robotics
Research, 5(1):90-8.

Lemeshow, S, D. Hosmer, J. Kler and S. Lwange, (1990).
Adequacy of sample size in health studies. World Health
Organization. John Willey and Sons.

 Mataric, M. (2001). Principled and efficient methods for
control and learning in robot teams and humanoids.
Proceedings of the LAAS-CNRS 9th International
Symposium on Intelligent Robotic Systems, Toulouse.

 Mediavilla, M., Fraile, J. C. (2001). A multi robot System of
three manipulators with on-line path planning abilities.
Proceedings of the LAAS-CNRS 9th International
Symposium on Intelligent Robotic Systems,Toulouse

Mediavilla, M., Fraile, J.C. , Dodds, G. (1998) Optimization
of collision free trajectories in multi robots systems.
Proceedings of the IEEE International Conference on
Robotics and Automation.

Meng, Max , Yang, Xianyi, (1998). A neural network
approach to real-time trajectory generation. Proceedings
of the IEEE International Conference on Robotics and
Automation, 1725-1730.

Quinlan, S. and Khatib, O. (1993)Elastic bands: Connecting
path planning and control. In. Proc. of the IEEE Int.
Conf. On Robotics and Automation, volume 2, pages
802-7.

