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Abstract: This note deals with the exact Fault Detection and Isolation problem. In
the case of observer-based residual generation, the problem amounts to find two gain
matrices such that the tw o problems are similtaneously solved. It is known that the
freedom in eigenstructure assignment leads to well-conditioned design which is robust
to unstructured uncertainties. The approach here considered aims to design a residual
generator trough a full-order observer to achiev efault detection and isolation by
means of right and left eigenstructure assignment. Moreover when diagonal isolation
cannot be obtained, an almost isolation method, based on a functional minimization,
is proposed. A numerical example sho wsthe effectiveness of the con tribution here

presented.
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1. INTRODUCTION

F ault detection and isolation (FDI) tehniques in-
volve the generation and evaluation of fault accen-
tuated signals on the basis of available measure-
ments and a mathematical model of the system.
FDI problem, which plays a central role in system
diagnosis, has been extensively studied in recen t
past (Frank, 1996; Patton and Chen, 1999; Shen
and Hsu, 1998). The problem has been stud-
ied under various hypotheses and using various
resolution techniques. Among these approaches,
the geometric one appeared to be very appealing
(Massoumnia et al., 1989; Patton and Chen, 2000).

In this paper, w eare concerned with the FDI
problem, where our aim is to design a filter which
exactly detects and isolates fault signals. T odo
this, we build a residual generator through a full-
order observer. More precisely ,w elook for the
unknown gain matrix values which ensure that:

a) the transfer function from the disturbance to
the residual is zero,

b) the transfer function from the faults to the
residual has a diagonal structure.

The contribution of this paper aims to the de-
sign of a diagnostic observer to achiev eexact
fault detection and isolation by means of right



and left eigenstructure assignment. We propose
a procedure to eigenstructure assignment for FDI
based on the assignment of some right eigenvectors
parallel to the disturbance distribution directions.
It is straightforward to observe that the observer
design is a dual problem of the disturbance decou-
pling design one, and there are only a few studies
about left eigenvectors assignment in control de-
sign problems (Choi et al., 1995).

Next, the almost isolation problem is treated. The
notion of almost fault identification is motivated
by a vast control literature that exists on exact and
almost disturbance decoupling. In almost fault
isolation, we seek in a natural way an almost
decoupling disturbance based on the residual sig-
nal rather than the exact disturbance decoupling
(Saberi et al., 2000).

2. FORMULATION PROBLEM AND
PRELIMINARIES

We deal with linear continuous and discrete time-
invariant systems. In order to show our approach,
in the sequel we shall consider the following class
of LTI continuous systems which are disturbed by
an additive unknown disturbance

{i@):Aﬂﬂ+BMﬁ+Eﬂﬂ+Rﬂﬂ(D
y(t) = Cu(t)

where z(t) € R"™ is the state vector, u(t) € R™ is
the control input vector, d(t) € R? is the unknown
disturbance vector, f(t) € RY is the fault vector
and y(t) € RP is the output vector. A, B, C, E,
are known matrices with appropriate dimensions.
R denotes the fault distribution matrix.

The residual generator is based on the following
full-order observer

&(t) = (A+ KC)#(t) + Bu(t) + Ky(t)
yt) = Cz (2)
r(t) = Q (y() —g(t)).

When the residual generator (2) is applied to
the system described by equations (1), the state
estimation error and the residual are governed by

é(t) = (A+ KC)é(t) + Ed(t) + Ry(t) 3
r(t) = He(t) (3)

where H = () C. Since the number of fault signals
that can be isolated is bounded from the above by
the number of measurements, the condition

p>q+d (4)

is required to provide sufficient information for
g multiple fault signals and d multiple unknown
inputs.

The problem is then to determine the unknown
matrices @) and K such that the residual r(¢) is not
affected by the disturbances d(t) and the transfer
function from the fault signals f(t¢) to the residuals
has to be diagonal, that is

Gri(s)=H(sI—A-KC)'E=0 (5)
Grp(s)=H(sI - A-KC)™'R (6)
= diag(grlh (S)a o Grqfy (S))

Recall that an FDI ( Fault Detection and Isola-
tion) scheme, which makes use of the residuals
with the disturbances de-coupling property, is ro-
bust.

Theorem 1. (Patton and Chen, 2000) The suffi-
cient conditions for satisfying the disturbance de-
coupling requirement (6) are

1) QCE=0

2) All columns of the matriz E are right eigen-
vectors of (A + KC) corresponding to any
eigenvalues.

Disturbance de-coupling does not impose any re-
striction on the choice of the remaining n —d right
eigenvectors and corresponding eigenvalues of A+
KC. Under disturbance de-coupling by assigning
right eigenvectors the transfer function between
residuals and faults becomes

Gopls) = S H vili g

s— A\
i=1 ¢

(7)

n—d
’UilT
= H L
Z 5=\ k,
i=1
where V. = [vy,...,v,], L = [l1,...,1,]" and
A =[A1,...,\,] are right eigenvectors, left eigen-

vectors and eigenvalues of A + K C respectively.

After having de-coupled the disturbance by as-
signing right eigenvectors, in order to obtain a
structure of the transfer function (7), the following
equations have to be satisfied:

Hv;=0,i=n—q+1,...,n+8)
NN EC)
,q; 1 # j(10)

row(H);v; =0,4,j=1,...
row(H); v;l7 col(R); =0,4,j=1,...



In the sequel, we propose a factorization of the
right (left) eigenvectors of a matrix, which depends
on a parameter vector belonging to R. Let p,q €
N; we will denote x(p,q) the g-th fundamental

symmetric function of points x1,...,Ty; it is
defined as
1, p=0,1,...5¢=05
0, g<0||p<O0|lg>p;
x(p,q) = i I (11)

x(p—1,q) + zpx(p— 1, - 1),
otherwise.

Proposition 2. Let H € R™™ with all distinct
eigenvalues «a;, ¢ = 1,...,n. The right eigenvec-
tors w;, i = 1,...,n, of H are given by

n—1ln—-1—k

w; :Z Z(fl)s"'kx(n,n —1—k-— s)asth(m)

k=0 s=0
heR™, i=1,...,n,

where h"w; # 0,1 =1,...,n and x(n, k) denotes
the kth fundamental symmetric function of the
eigenvalues of H, aq, ..., ay.

Note that the left eigenvectors can be computed
by simply substituting in (12) H* to H.

3. OBSERVER POLE PLACEMENT
PROBLEM

The right eigenvector assignment problem amounts
to determine a matrix K which assigns the eigen-
values of the observer dynamic matrix A + KC
in the left-hand side of the complex plane. This
is only possible when (C, A) is a detectable pair.
In the following, we propose a pole placement
procedure that allows to place the eigenvalues of
A + KC in prescribed locations by assigning the
right eigenvectors of A + K C. Let the eigenvalue
problem be given

(A-FKC)UZ':)\Z'UZ', i1=1,...,n, (13)

and let my,...,m, the eigenvalues of A, U =
[u1,...,up] and W = [wy,...,w,] the matrices
of right and left eigenvectors of A. Let I represent
the right eigenvector of A + KC v; in the basis
U : UT = V. The n vectors equations (13) can be
rewritten as

n
ny,icw;‘FKCuk =\ -7, d,s=1,...,n. (14)
i=1

For this pole placement problem, the first step is to
construct a gain matrix K € R"*P that assigns p

eigenvalues. To this purpose let A, = {A1,...,Ap}
be a symmetric set of complex numbers. It can be
showed that if there exist p independent eigenvec-
tors

v € C()\kI—A)il, k=1,...,p,
01(k),...,0, 1(k), 1]CO\T—A)~", (15)
k=1,...,p,

then there exists K such that Aq, ..
values of A + KC.

., Ap are eigen-

Proposition 3. Let {Aq,...
the n - p equations

,Ap} be a subset of A,

wi KCuj = ~vj (A\j —m1)
wy KCuj = 7]2 (Aj —m2) (16)

w, KCuj = 7' (Nj —mn), j=1,...,p,

extracted from (14) have a solution K for almost
all choices of u, € CA\ I —A)7L, k=1,...,p.

The remaining n — p eigenvalues of A + KC are
computed using the following lemma.

Lemma 4. Let K be a gain matrix which satisfies
Proposition 3. The remaining eigenvalues of the
matrix A + KC are the eigenvalues of (n — p) X
(n — p) matrix

AT = A22 — LA12 (].7)

u_zhere A22 = CATQ, A12 = CATg, L =
CV,[CV,]7Y, Up = [ur,-..,up), and C is any
(n — p) X (n — p) matriz such that the matriz
= [T, T3] is nonsingular.

¢
c

4. SOLUTION OF THE FDI PROBLEM BY
ASSIGNING RIGHT AND LEFT
EIGENVECTORS

In this section, we propose a parametric procedure
that allows to solve the disturbed fault detection
and isolation problem by imposing the right and
left eigenvectors of the full-order observer.

The procedure is based on the use of the free
parameters which characterize the first p right
eigenvectors u; of A + KC, as showed in the
previous section, and the left eigenvectors [T given
in the parameterized form (12). The number of
free parameters is obtained by the union of the
following sets:



e Number of free parameters ©, of the right
eigenvectors:

0, = {0:(1),....0, +(1),...,
01(p_ d)a v 70p*1(p_ d)} (18)

No, =n(p—d—1)+d,

e Number of free parameters ©; of the left
eigenvectors:
O, =h
N@l =n-—- 1,

Remark Note that Ng, is obtained by taking into
account n—p free parameters that must be used to
assign the remaining n — p eigenvalues of A+ KC,
and d right closed-loop eigenvector are imposed
equal to the disturbance directions E.

(19)

Numerical Procedure

Step 1 Compute the residual weighting matrix @
such that QC E =0

Step 2 Choose the desired observer eigenvalues A
and partition the spectrum into A, = {4, ...,
Aptand Ay = {Apt1, -, An )

Step 8 Using equations (15), calculate explicit para-
metric expressions of the p right eigenvectors
associated to A,

Step 4 Impose the d columns of E as right eigenvec-
tors of A+ KC

Step 5 Solve the sets of equations (8) and (9) with
respect to ©,.

Step 6 Compute the gain matrix K applying Propo-
sition 3 and Lemma 4

Step 7 Construct parametric expressions of the left
eigenvectors of A + K C' using formula (12)

Step 8 Numerical solve equations (10) with respect
to O,

Step 9 Compute

n—d
UlllT

i=1

5. ALMOST ISOLATION

Fault detection problems makes sense only when
there is a possibility of the occurrence of multiple
fault signals. In that case, in addition to detecting
that a single fault or multiple faults occurred, one
has to identify as to what individual fault or faults
have occurred. It is easy to recognize that the task
of exactly isolating or identifying (as proposed in

the previous section) every individual fault could
require too restrictive conditions. Therefore we
can weaken this requirement by requiring that the
conditions are satisfied arbitrarily well but not
perfectly.

As it is well known, disturbance de-coupling does
not place any restriction on the choice of right
eigenvectors v;, ¢ = n —d + 1,...,n and the
corresponding eigenvalues \;, i =n—d+1,...,n.
Therefore, the free parameters explicited in the
previous section can be used to maximize the fault
effect as

n—d
’UzllT
1 i

As pointed out in (Patton and Chen, 2000) the
most factor in fault detectability is the steady-
state gain matrix G,;(0), hence a performance
index, to be maximized for increasing fault de-
tectability, is defined as:

n—d
vl
J(A) = —L
W) = | H=- R (20)
1 F
where || - || denotes the Frobenius norm.

To maximize the fault effect and, subsequently
fault detectability, the performance index J(A)
should be maximized. Consequently, the problem
can be formulated as an optimization one.

Let ¥ = ©,.U©, be the free parameter vector and
v =dim(X) :

Problem 1

max J(A)

21
eS, ( )

where S, is a compact set of R”.

Note that the maximization of J(A) is a con-
strained optimization problem because all the el-
ements of A must be on the left hand-side of the
complex plane.

The optimization problem can be solved by any
suitable numerical search method. In this note, we
have faced Problem 1 by a genetic-like algorithm
(Goldberg, 1989), which has a minimum degree of
problem dependence.

Consequently, the new posed problem ( Problem
1) imposes a variation on the numerical procedure
of the previous section. In fact, Step 8 must be
modified in the sense that it solves an optimization



problem: the maximization of the detectability
index (20) which depends on the same parameter
vector by using any genetic scheme.

6. ILLUSTRATIVE EXAMPLE

In this section, we present a numerical example
that allows to verify the reliability of the pro-
posed method for robust detection and isolation
problem. As clearly comes out from the nature
of the approach, we can also apply our technique
to discrete time-invariant systems, therefore we
shall consider an example taken from (Shen and
Hsu, 1998), which represents the mathematical
model of an automotive engine. The nominal sys-
tem matrices are obtained by using standard least-
squares error technique:

—0.0960 —0.1306 —0.1910 —4.6833 0.7491

1 0 0 0 0

A= 00885 0.2358 0.9911 0 —29328
0 0 0 0 0
0 0 0 0 0
26.%821 70.3055 L0000
00100
B= (1) 70.3518 %= 100010
0 ) 00001

The unknown input distribution matrix E is de-
fined as

&=
Il
coo o~

Finally, the fault entry matrix for actuator fault
diagnosis in this case is simply defined as

R =B.

The weighting matrix @ to satisfy QC'E = 0 can
be easily found as

0101
@= {0 01 1] ’
Let A = {0.1,0.2,0.5,—0.25, —0.15} be the closed-
loop spectrum, which is divided into two subsets
A, = {0.1,0.2,0.5,-0.25} and A,_, = {-0.15}.
The vectors which parameterize the bases of the

characteristic subspaces, are defined as 6;(1) =
0:1(1) 1]7, i=1,...,4.

)

Now, let us impose that the column of the distur-
bance matrix F is a right eigenvector of A+KC': in
particular, we choose the eigenvector correspond-
ing to the eigenvalue Ay € A, is chosen. There-
fore, the parameterized closed-loop eigenvectors
corresponding to the elements of the subset A,
are represented as

vy =C(0.11 — A)~'6,(1)
vy = C(0.2 — A) 16,(1)
vy =C(0.51 — A)~'6;(1)

Hence, the free parameter ©, coming from the
right closed-loop eigenvectors is

()r ::{9117'"79147"'70317"'7034}-

In order to compute the gain matrix K, which
assigns the desired closed-loop spectrum, and to
achieve diagonal fault isolation, we simultaneously
have solved some equations of sets (8) and (9)
inside the assignment procedure ( Step 5 and Step
6) , where the parameter 1, (1) is used to impose
the remaining closed-loop eigenvalues of A,_,:

]Yv3::0,
rOW(H)11}2 = 0,
row(H),v; =0.

Thse equations are parameterized by the follow-
ing subset of ©,.: {612(1),6021(1),031(1),032(1)}, so
that, the gain matrix K is calculated as

—0.154 —2.21111 4.65164 —2.03748

-1 0.714172  0.00831456  0.266679

K = | —0.0885 —0.327467 —0.00211946 3.30927
0 0.7136327  0.2037032  0.417336

0 —0.713633 —0.00370321 —0.217336

Now, we can construct parametric expressions of
left and right closed-loop eigenvectors by formula
(12). Let v;, ¢ = 1,...,n the left closed-loop
eigenvectors of A + K(C':

n—1ln—1—k

(—1)*TEx(n,n —1 —k — s)A¥ (A + KC)T)® nT,

(~1)"x(n,n — 1~k — AS((A+ KC)T) A7,

(=1 *x(n,n =1 —k — s)XE((A + KC)T)* hT,



n—1ln—1—k

vs = (=) *x(n,n—1—k— s)AE(A+ KC)* BT,
k=0 s=0

where h = [hll , hgl, h31, h41, ].] and ®l =

{h117 h217 h317 h41}-

Hence, the following equations of set (10) and the
further equation Hvs = 0,

row(H); v; ¢ col(R)2 =0,
I'OW(H)Q V2 ’(,b; col(R)1:0,
HU5:0,

are solved with respect to the elements of 0.
Consequently the closed-loop right and left eigen-
vectors matrices are

0.403659  0.608021  0.481425 1.09542 —1.09542

26.4605 —8.29576 7.61914 —609.613 —7.61914

V = —0.455945 0.246734 0.270656  0.270656 —0.270656
1 0 0 0 0

0.581668 —0.129742 —0.160659 —0.160659 0.160659

—0.003476 —0.013213 —0.002292 0.031565 —0.001402
—0.001810 —0.026421 —0.008845 0.047777 —0.012029
LT = 0.004804 —0.086071 —0.062707 0.117166 —0.078080
—0.015997 0.007474 0.016703 —0.015121 0.025581
—0.009992 0.001658  0.003700 0.003581 0.011239

Hence, the transfer matrix from the faults to
residuals is

0.036938

01
s 48404 |- (23)
s—0.2

Grf(S) =

Finally, it is worth to note that the above nu-
merical results depend on the fact that some free
parameters of @, (0, — {#12(1),012(1), 6021 (1),
031(1),032(1)}) has been fixed to particular values.
As a consequence by picking other values in the
real parameter space, we can obtain different real-
ization for the gain matrix K, the closed-loop right
eigenvector (V) and the closed-loop left eigenvec-
tor (LT) respectively.

7. CONCLUSIONS

A geometric approach to the FDI problem by
means of right/left eigenstructure assignment has
been here proposed. The method gives a way to
explicitly represent the structure of the observer
matrices and a simple computational procedure to
achieve such result has been listed using a right
eigenstructure assignment procedure. The results
from a numerical experiment taken from literature
are encouraging shown the strenghtness of the
geometric paradigm. A non secondary observation
to the experiments is that exactly the same results
are obtainable by duality, if a left-eigenvector
assignment procedure is used.
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