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Abstract: This paper considers stochastic stability and stochastic stabilizability of linear
discrete-time systems with Markovian jumps and mode-dependent time-delays. Linear
matrix inequality (LMI) techniques are used to obtain sufficient conditions for the
stochastic stability and stochastic stabilizability of this class of systems. A control design
algorithm is also provided. A numerical example is given to demonstrate the effectiveness
of the obtained theoretic results.
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1. INTRODUCTION

Time-delay is an important factor that may affect the
performance of dynamical systems. It can even, in
some situation, cause instability of a system that we
would like to control if the presence of such time-
delay during the design phase is not taken into ac-
count. For deterministic linear systems with time-
delay, we have seen an increasing interest during the
last two decades. There are numerous results in the
literature on time-delay systems, see for example,
(Malek-Zavarei and Jamshidi, 1987) and the refer-
ences therein. However, most results are on deter-

ministic continuous-time linear systems with time-
delay. Stability, stabilizability and control problems
for this class of systems have been studied and nu-
merous results are available in the literature such as
(Gutman and Palmor, 1982; Basheret al., 1986; Li
and de Souza, 1997; Mahmoud, 1999; Mahmoud and
Al-Muthairi, 1994; Nguang, 1994; Shi, 1998; Song
and Kim, 1998; de Souza and Li, 1999). However,
for deterministic class of discrete-time linear systems
with time-delay only few results have been reported in
the literature. We believe that the main reason for this
is that these systems can be transformed to equivalent
systems without time-delay and then current results
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on stability, stabilizability and control design can be
applied. For more information on this class of systems,
we refer reader to Boukas and Liu (2001) and the
references therein.

The system we are studying in this paper is referred
to as the discrete-time Markovian jump linear systems
with time-delay. It has two components in the state
vector. The first part is called as the state of the system
which is continuous-valued, and the second part is
regarded as the mode of the system which takes dis-
crete values. The problems of stochastic stability and
stochastic stabilizability have been tackled by many
authors and recently we have seen the publication
of different results ranging from delay-independent
to delay-dependent mainly for the continuous-time
case such as (Nguang, 1994; de Souza and Li, 1999).
Several situations were considered including constant
time-delay, time-varying-delay and mode-dependent
time-delay for the continuous-time systems and con-
stant time-delay for discrete-time systems such as (Shi
et al., 1999). However, to the best of authors’ knowl-
edge, the mode-dependent time-delay case for the
class of discrete-time linear systems with Markovian
jump parameters has not been addressed and this will
be the subject of this paper. The goal of this paper is
to develop mode-dependent sufficient conditions for
stochastic stability and stochastic stabilizability for
linear discrete-time systems with Markovian jump pa-
rameters and mode-dependent time-delay in the state.
The linear matrix inequality (LMI) techniques de-
scribed in (Boydet al., 1994) are used to solve the
above problems.

The paper is organized as follows. In Section 2, the
problem is stated and the objective of the paper is
formulated. The problem of stochastic stability for the
given system is examined and delay-dependent suffi-
cient condition is developed in Section 3. We continue
in Section 5, to investigate the problem of stabilizabil-
ity and establish delay-dependent conditions. In addi-
tion, a design algorithm that stabilizes the resulting
closed-loop system is provided. Numerical examples
are given in Section 7 to illustrate the proposed theo-
retical results.

2. PROBLEM STATEMENT

Let {rk, k ≥ 0} be a homogeneous Markov chain that
takes values in a finite state spaceS = {1, 2, . . . , N}
with transition probabilitiespij from modei to mode
j defined by:

pij = Pr(rk+1 = j|rk = i) (1)

wherepij ≥ 0 and
∑N

j=1 pij = 1 for all i, j ∈ S.

The dynamics of the system is assumed to be de-
scribed by the following set of equations:

Σ : xk+1 = A(rk)xk + Ad(rk)xk−drk
+ B(rk)uk

xl = φl, l = −dr0 , . . . ,−1, 0. (2)

the discrete-time indexk is assumed to take values
[−drk

, . . . , 0] andr0 is assumed to be given. Herexk

anduk are then- andm-dimensional state and control
input vectors respectively at instantk. The matrices
A(rk), Ad(rk) and B(rk) are constant matrices of
appropriate sizes for any fixed values ofrk in S, and
drk

is a positive integer representing the time-delay of
the system. Note that sincerk is a Markov chain, so is
drk

with the same transition probabilities.φk is some
initial condition for the state vectorxk. We assume in
this paper thatdrk

is mode-dependent.

Our objective in this paper is to obtain sufficient
conditions that guarantees the stochastic stability and
the stochastic stabilizability of the class of system
under consideration.

For the systemΣ in (2), we use the following control
law:

uk = K(rk) xk (3)

where the control gainK(rk) is to be designed for
each system moderk ∈ S.

Notation. The notation used in this paper is quite
standard.Z,Rn andRn×m denote, respectively, the
set of integer numbers, then dimensional Euclidean
space and the set of alln × m real matrices. The
superscript “>” denotes the transpose and the notation
X ≥ Y (respectively,X > Y ) whereX andY are
symmetric matrices, means thatX − Y is positive
semi-definite (respectively, positive-definite).P =
(P (1), . . . , P (N)) > 0 means allP (1), ..., P (N)
are symmetric and positive-definite.I is the identity
matrix with compatible dimension.E{·} denotes the
expectation operator with respective to certain prob-
ability measureP . `2[0,∞] is the space of square
summable vector sequence over[0,∞]. ‖ · ‖ will refer
to the Euclidean vector norm whereas‖·‖[0,∞] denotes
the `2[0,∞]-norm over[0,∞] defined as‖f‖2[0,∞] =∑∞

0 ‖fk‖2. For simplicity of presentation, we define
d, d̄, p as:

d = min(d1, . . . , dN )

d̄ = max(d1, . . . , dN )

p = min(p11, . . . , pNN )

For a given set of positive definite matricesP (j)
for j = 1, . . . , N , we define the following convex
combinationsP̄ (i) as

P̄ (i) =
N∑

j=1

prkjP (j) (4)

wherei = 1, . . . , N .

Remark 1.Notice that, due to the existence of time-
delay, drk

, in the systemΣ, the joint state vector
(xk, rk) is not a Markov chain, however we can define
Xl(k) = xk+l, Rk(l) = rk+l,−drk

≤ l ≤ 0 to



overcome this and get a Markov chain, thus it can be
seen that(Xk, Rk) is a Markov chain.

Remark 2.Indeed, systemΣ in (2) can be reformu-
lated as a one without time delay by constructing a
higher dimensional vectorX(k) defined as:

X(k) =


x(k)

x(k − 1)
x(k − 2)

...
x(k − d)

 (5)

Then, systemΣ can be rewritten as

X(k + 1) = F (rk) X(k) + G(rk) u(k) (6)

x(k) = H X(k) (7)

where

F (rk) =



A(rk) 0 . . . Ad(rk) 0 . . . 0
I 0 . . . 0 . . . . . . 0
0 I . . . 0 . . . . . . 0
... 0

...
...

...
...

...
...

...
...

0 0 0 . . . 0 I 0


(8)

G(rk) =


B(rk)

0
...
0

 , H = [I 0 . . . 0]. (9)

Note that system (6)-(7) is time-delay free, for which,
the issues of stochastic stability, stabilization and con-
trol can be sorted out by using standard existing results
on linear discrete-time markovian jump systems, for
example, Jiet al. (1991). In this paper, instead of
using the extending system dimension approach, we
propose a different methodology to handle system (2),
by which the maximum unknown time-delay can be
conventionally determined such that the underlying
system remains stochastically stable. Notice that this
point is very important since it is difficulty to know
time-delay exactly in practice, thus using upper and
lower bounds in design would be an alternative effec-
tive way.

3. STABILITY

In this section, we present delay-dependent conditions
that can be used to check whether the systemΣ in (2)
is stochastically stable or not. First, we introduce the
following stochastic stability concept.

Definition 1. For the systemΣ in q(2) with uk = 0
for all k ≥ 0, the equilibrium point0 is stochastically
stable, if for every initial state the following holds:

E

{ ∞∑
k=0

‖xk(.)‖2|X0, r0

}
< ∞. (10)

The following result concerns with stochastic stability
of the systemΣ in (2).

Theorem 1.If there exist symmetric and positive-
definite matricesP = (P (1), . . . , P (N)) > 0 and
Q > 0 such that the following holds for everyrk ∈ S:

M(rk) =

 M11(rk) A>(rk)P̄ (rk)Ad(rk)

A>d (rk)P̄ (rk)A(rk) A>d (rk)P̄ (rk)Ad(rk)−Q


< 0 (11)

with M11(rk) = A>(rk)P̄ (rk)A(rk) − P (rk) +(
1 +

(
d̄− d

) (
1− p

))
Q, then the systemΣ in (2) is

stochastically stable.

Proof: To prove our theorem, let us consider the
following Lyapunov candidate functional:

V (Xk, Rk) = V1(Xk, Rk) + V2(Xk, Rk) + V3(Xk, Rk)

with

V1(Xk, Rk) = x>k P (rk)xk

V2(Xk, Rk) =
k−1∑

l=k−drk

x>l Qxl

V3(Xk, Rk) =
−d∑

l=−d̄

k−1∑
m=k+l+1

x>mQ̄xm,

whereQ̄ = (1− p)Q.

∆V (Xk, Rk) is given by:

∆V (Xk, Rk) = ∆V1(Xk, Rk) + ∆V2(Xk, Rk) + ∆V3(Xk, Rk)

Let us now compute∆V1(Xk, Rk):

∆V1(Xk, Rk) = E [V1(Xk+1, Rk+1)|Xk, Rk]− V1(Xk, Rk)

= E
[
x>k+1P (rk+1)xk+1|Xk, Rk

]
− x>k P (rk)xk

= x>k
[
A>(rk)P̄ (rk)A(rk)− P (rk)

]
xk

+x>k A>(rk)P̄ (rk)Ad(rk)xk−drk

+xk−drk
A>d P̄ (rk)A(rk)xk

+xk−drk
A>d (rk)P̄ (rk)Ad(rk)xk−drk

. (12)

ForV2(Xk, Rk), by standard manipulation, we have:

∆V2(Xk, Rk) = E [V2(Xk+1, Rk+1)|Xk, Rk]− V2(Xk, Rk)

= E

 k∑
l=k+1−drk+1

x>l Qxl|Xk, Rk

− k−1∑
l=k−drk

x>l Qxl.



By using the fact that the Markov chain at time(k+1)
can either remain at moderk or jumps to modej, we
get the following:

∆V2(Xk, Rk) = prkrk

k∑
l=k+1−drk

x>l Qxl

−prkrk

k−1∑
l=k−drk

x>l Qxl +
N∑

j 6=rk

prkj

k∑
l=k+1−dj

x>l Qxl

−
N∑

j 6=rk

prkj

k−1∑
l=k−drk

x>l Qxl

After simple algebraic manipulation we can rewrite
∆V2(Xk, Rk) as follows:

∆V2(Xk, Rk) = prkrk

[
x>k Qxk − x>k−drk

Qx>k−drk

]

+
N∑

j 6=rk

prkj

x>k Qxk − x>k−drk
Qxk−drk

−
k−drk∑

l=k+1−dj

x>l Qxl


= x>k Qxk − x>k−drk

Qxk−drk
+

N∑
j 6=rk

prkj

k−drk∑
l=k+1−dj

x>l Qxl.

Bearing in mind that
∑N

j 6=rk
prkj = 1− prkrk

and the
bounds on the time-delay and onprkrk

, we have the
following expression for∆V2(Xk, Rk):

∆V2(Xk, Rk) ≤ x>k Qxk − x>k−drk
Qxk−drk

+(1− p)
k−d+1∑

l=k+1−d̄

x>l Qxl. (13)

In terms ofV3(Xk, Rk), one has:

∆V3(Xk, Rk) = E [V3(Xk+1, Rk+1)|Xk, Rk]− V3(Xk, Rk)

= E

 −d∑
l=−d̄

k∑
m=k+2+l

x>mQ̄xm|Xk, rk

− −d∑
l=−d̄

k−1∑
m=k+l+1

x>mQ̄xm

=
−d∑

l=−d̄

[
x>k Q̄xk − x>k+l+1Q̄xk+l+1

]

=
(
d̄− d

)
x>k Q̄xk −

−d∑
l=−d̄

x>k+1+lQxk+1+l

=
(
d̄− d

)
x>k Q̄xk −

k−d+1∑
l=k−d̄+1

x>l Q̄xl. (14)

Finally, by using equalities (12)-(13), inequality (14),
and the fact that̄Q = (1 − p)Q, together with the
condition (11), we obtain

∆V (Xk, rk)≤
[
x>k x>k−drk

]
M(rk)

[
xk

xk−drk

]
< 0. (15)

The rest of the proof follows the same lines as the ones
given in Boukas and Yang (1995) or Boukas and Shi
(1997). ∇∇∇

Remark 3.It is of practical interest to find the max-
imum time-delay such that the system is stable. The
maximum time delay can be obtained by solving the
following linear optimization problem:

max
d̄ > 0, P=(P (1),...,P (N))>0, Q>0, M(rk)<0

d̄

where the last constraintM(rk) < 0 was given in
(11).

When time-delay is constant and mode independent,
i.e. drk

= d for all rk ∈ S and therefored = d̄ = d,
the results given by Theorem 1 is replaced by the
following result.

Corollary 4. If there exist symmetric and positive-
definite matricesP = (P (1), . . . , P (N)) > 0 and
Q > 0 such that the following holds for everyrk ∈ S:

N(rk) =

 N11(rk) A>(rk)P̄ (rk)Ad(rk)

A>d (rk)P̄ (rk)A(rk) A>d (rk)P̄ (rk)Ad(rk)−Q

 < 0

(16)

whereN11(rk) = A>(rk)P̄ (rk)A(rk)− P (rk) + Q,
then the systemΣ in (2) is stochastically stable.

5. STABILIZABILITY

Our goal in this section is to design a state-feedback
controller which stabilizes the resulting closed-loop of
system. The controller is supposed to have the form
of (3). Let us first define the concept of stochastic
stabilizability.

Definition 2. System (2) is stochastically stabilizable,
if for every initial state there exists a state-feedback
controller (3) with gainK = (K(1), . . . ,K(N)) such
that the resulting closed-loop system is stochastically
stable.

Replacing the controluk by its expression given by
Eq. (3) and substituting it into systemΣ in (2), we get
the following dynamics for the closed-loop system̃Σ:

Σ : xk+1 = [A(rk) + B(rk)K(rk)]xk + Ad(rk)xk−drk

xl = φl, l = −dr0 , . . . ,−1, 0. (17)

If we let Ā(rk) = A(rk) + B(rk)K(rk), we have the
following result using the previous result on stochastic
stability.



Theorem 2.If there exist symmetric and positive-
definite matricesP = (P (1), . . . , P (N)) > 0 and
Q > 0 for a given set of gainsK = (K(1), . . . ,K(N))
such that the following holds for everyrk ∈ S:

M(rk) = M11(rk) Ā>(rk)P̄ (rk)Ad(rk)

A>d (rk)P̄ (rk)Ā(rk) A>d (rk)P̄ (rk)Ad(rk)−Q


< 0 (18)

whereM11(rk) = Ā>(rk)P̄ (rk)Ā(rk) − P (rk) +(
1 +

(
d̄− d

) (
1− p

))
Q, then the system̃Σ in (17) is

stochastically stable under the state feedback control
law (3).

Proof: It can be worked out along the same line as in
Theorem 1. ∇∇∇

Similarly, when the time-delay is constant and does
not depend on the mode, i.e.drk

= d for all rk ∈ S
and therefored = d̄ = d. Theorem 2 is reduced to the
following corollary.

Corollary 6. If there exist symmetric and positive-
definite matricesP = (P (1), . . . , P (N)) > 0 and
Q > 0 for a given set of gainsK = (K(1), . . . ,K(N))
such that the following holds for everyrk ∈ S:

N (rk) =

 N11(rk) Ā>(rk)P̄ (rk)Ad(rk)

A>d (rk)P̄ (rk)Ā(rk) A>d (rk)P̄ (rk)Ad(rk)−Q


< 0, (19)

whereN11(rk) = Ā>(rk)P̄ (rk)Ā(rk)− P (rk) + Q,
then the systemΣ in (2) is stochastically stable under
the control (3).

Now, we are in the position to design the controller,
uk = Kxk in Theorem (2), that stabilizes systems (2).
First, notice that, if we define:

W (rk) =
(√

prk1I, . . . ,
√

prkNI
)

Z = diag (Z(1), . . . , Z(N))

ρ = 1 +
(
1− p

) (
d̄− d

)
with Z(rk) = P−1(rk), the right hand side of (18)
can be rewritten as:−P (rk) + ρQ 0

0 −Q



+

 Ā>(rk)W (rk)

A>d (rk)W (rk)


 P (1)

...
P (N)


·
[
W>(rk)Ā(rk) W>(rk)Ad(rk)

]
(20)

by using Schur complement, the following inequality
can be obtained from (20):


−P (rk) + ρQ 0 Ā>(rk)W (rk)

0 −Q A>d (rk)W (rk)

W>(rk)Ā(rk) W>(rk)Ad(rk) −Z


< 0. (21)

Let U = Q−1 andY (rk) = K(rk)Z(rk). Pre- and
post-multiplying inequality (21) bydiag(Z(rk), U, I)
we get:

−Z(rk) + Z(rk)ρQZ(rk) 0
0 −U

W>(rk)Ā(rk)Z(rk) W>(rk)Ad(rk)U

Z(rk)Ā>(rk)W (rk)
UA>d (rk)W (rk)

−Z

 < 0. (22)

Using now the fact thatY (rk) = K(rk)Z(rk), to-
gether with Schur complement again, one has:


−Z(rk) 0

0 −U

W>(rk) (A(rk)Z(rk) + B(rk)Y (rk))W>(rk)Ad(rk)U
Z(rk) 0

(A(rk)Z(rk) + B(rk)Y (rk))>W (rk) Z(rk)
UA>d (rk)W (rk) 0

−Z 0

0 −1
ρ
U

 < 0 (23)

To summarize the above analysis, a control design
algorithm that stabilizes the systemΣ in (2) is given
by the following theorem.

Theorem 3.If there exist symmetric and positive-
definite matricesZ = (Z(1), . . . , Z(N)) > 0, Y =
(Y (1), . . . , Y (N)) > 0 and U > 0 such that the
following holds for eachrk ∈ S:


−Z(rk) 0

0 −U

W>(rk) (A(rk)Z(rk) + B(rk)Y (rk)) W>(rk)Ad(rk)U
Z(rk) 0

(A(rk)Z(rk) + B(rk)Y (rk))>W (rk) Z(rk)
UA>d (rk)W (rk) 0

−Z 0

0 −1
ρ
U


< 0, (24)

then, the systemΣ in (2) is stochastically stable under
the controller (3) and the control gain is given by
K(rk) = Y (rk)Z−1(rk).



Remark 4.To find the maximal bound of time delaȳd
with which system (2) is stochastically stable, we need
to solve the following optimization problem:

max
d̄>0, Z=(Z(1),...,Z(N))>0, Y=(Y (1),...,Y (N))>0, U>0

d̄

such that the constraint (24) is satisfied.

7. NUMERICAL EXAMPLE

In this section, we consider the stability and stabiliz-
ability of 2-D Markovian jump linear systems with
mode dependant time delays to illustrate the results
presented earlier.

Let us now, see how we can use the design algorithm
to determine the controller gainK = (K(1),K(2)).
For this purpose let us consider the following data:

A(1) =
[
−1.8 0.11

0 0.26

]
, A(2) =

[
0.3 0
0.16 0.4

]
Ad(1) =

[
0.19 0
0 −0.1

]
, Ad(2) =

[
0.2 0
0.3 0.2

]
B(1) =

[
1
0

]
, B(2) =

[
0
1

]
Using this data and the other data identical to the one
of example 1, solving LMIs (18) gives the following
feasible solution:

X(1) =
[

26.3572 2.8503
2.8503 61.6519

]
> 0

X(2) =
[

70.5968 −1.8900
−1.8900 64.0583

]
> 0

Y (1) =
[
34.4743 −0.6956

]
Y (2) =

[
−8.2613− 17.0265

]
U =

[
119.3331 −0.3912
−0.3912 121.0920

]
> 0

which gives the following gains:

K(1) =
[
1.3158 −0.0721

]
K(2) =

[
−0.1242 −0.2695

]
Therefore, controller (3) with the above gains stabi-
lizes the system under study in the MSQS sense.

8. CONCLUSION

In this paper, we have studied the problems of stochas-
tic stability and stochastic stabilizability for a class of
linear discrete time systems with Markovian jump pa-
rameters and mode-dependent time-delay. Sufficient
conditions in the LMI formalism have been developed
to solve the above problems. An algorithm to design
the stabilizing controller is also provided. A numerical
example is included to demonstrate the potential of
proposed techniques.
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