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Abstract: The problem of robustness in fault detection has been treated basicall y
using two kinds of approaches: actives and passives. Most of the literature in robust
fault detection is focused on the problem of active approach based on decoupling the
effects of the uncertainty from the effects of the faults on the residual. On the other
hand, the passive approach is based of propagating the effect of the uncertainty on
the residuals and then  using adaptive thresholds. In this paper, the passive approach
based on adaptive thresholds produced using a model with uncertain parameters
bounded in intervals, also known as an “ interval model” , will be presented in the
context of parity equations and observers methodologies, deriving their
corresponding interval versions. Finally, an example based on an industrial actuator
used as a FDI benchmark in the European project DAMADICS will be used for
testing and comparing the proposed approaches. Copyright © 2002 IFAC
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1. INTRODUCTION

Model-based fault detection is based on the use of
mathematical models of the monitored system. The
better the model used to represent the dynamic
behaviour of the system, the better will be the chance
of improving the reliabilit y and performance in
detecting faults. However, modell ing errors and
disturbances in complex engineering systems are
inevitable, and hence there is a need to develop
robust fault detection algorithms. The robustness of a
fault detection system means that it must be only
sensitive to faults, even in the presence of model-
realit y differences (Chen,1999). One of the
approaches to robustness is based on generating
residuals which are insensitive to uncertainty, while
at the same time sensitive to faults. This approach is
known as active and it has been extensively
developed these last years for several researchers
using different techniques: unknown input observers,

robust parity equations, H∞, etc. In the book of Chen
and Patton (1999) there is an excellent survey of the
active approach. On the other hand, there is a second
approach, called passive, that enhances the
robustness of the fault detection system at the
decision-making stage, mainly using an adaptive
threshold.

According to Gertler (1998), there is no algorithm
which is robust under arbitrary model error
conditions. To design an algorithm for robustness,
some rather detailed information is necessary about
the nature of errors and uncertainties, and such
information is seldom available. But even if it is,
what can be achieved is rather limited. Generall y
perfect decoupling of the residuals from
uncertainties it is only possible in a limited number
of model parameters. Uncertainty can be located in
the parameters (structured or parametric) or in the
structure of the model (unstructured). For the case of
structured uncertainty with unlimited number of
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uncertain parameters, passive robustness based on
using models with parameter values bounded in
intervals, also known as “ interval models” , wil l be
very suitable as it wil l be shown.  These models can
be obtained using identification techniques that
provides the nominal value and  the confidence
interval for every parameter. Actuall y, several
research groups actuall y are following this approach,
also known, as the bounding-approach, because of
the use of bounds to describe the uncertainty. To the
best of our knowledge these groups are at University
of Girona (Spain) (Armengol,2000), at LAAS-
Toulouse (France)  (Travé,1997), at Technical
University of Catalonia (Spain) (Puig,1999)
(Puig,2000) (Escobet,2001) and at CRAN-Nancy
(France) (Adrot,2000) (Ploix,2000). Interval models
have aslo been applied successfully in fault diagnosis
of  gas turbines in European ESPRIT projects:
TIGER and  SHEBA (Travé,1997) (Escobet,2001).

2. ROBUST FAULT DETECTION

Considering a MIMO linear dynamic system in
discrete-time, the nominal input-output relationship,
without faults, disturbances and noise will be
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2.1   Faults, Disturbances and Modelling Errors

Introducing now additive disturbances q(k),   noises
v(k) and faults p(k), the input-output relationship (1)
can be rewritten as
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where: SF(z) is the combined fault transfer function,
SD(z) is the combined disturbance transfer function
and SN(z) is the combined noise transfer function.

Denoting the actual transfer function of the physical
system, Mo(z), then
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where: )z(M∆  is the discrepancy between the
model and the true system. It represents two
conceptually different situations: a parametric (or
multiplicative) fault and a modelling error. The
underlying parameters approximation allows the
appropriate decomposition between parametric faults
and modell ing errors (multiplicative disturbances)
(Gertler,1998):
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where: ∆θθF  is a parametric fault and ∆θθD is a
parametric modell ing error. Then, the input-output
relationship (2) can be rewritten as
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2.2 Residual generation

The generic form of a residual generator is
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where: r(k) is the vector of residuals, V(z) and W(z)
are transfer functions. However, (6) is not necessarily
a residual generator. To be a residual generator to has
to return zero when all unknown inputs are zero, that
is, when (1) holds. Then,
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This form is also known as the computational form.
Now, substituting )k()z()k( uMy −  by (5) yields
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This form is known as the internal or unknown-
input-effect form of the generic residual generator,
showing how the residuals depend on faults,
disturbances, modell ing errors and noise.

2.3 Robustness Issues

Ideally, the residuals should only be affected by the
faults. However, the presence of disturbances, noise
and modell ing errors causes the residuals to become
nonzero and thus interferes with the detection of
faults. Therefore, the fault detection procedure must
be robust in the face of these undesired effects.
Robustness can be achieved in the residual
generation (active robustness) or in the decision
making stage (passive robustness), as it has been
introduced in Section 1. The passive approach rest on
the fact that the uncertainty caused by model errors
depends on the operating conditions. If it may be
possible to model this dependence, theoreticall y or
empiricall y, then  the test thresholds could be
changed accordingly. Adaptive thresholding
techniques were first proposed by Clark (1989), who
suggests an empirical relation between the operation
point and the corresponding detection threshold.
Further approaches are due to Emami-Naemi (1988),



who develops a theoretical relation between the
operation point, the model uncertainty and the
detection threshold. This approach is based in H∞
techniques and it was further explored by Ding and
Frank (1991). Another approach for adaptive
threshold generation was proposed by Horak (1988)
and it is based on a dynamical optimisation assuming
parametric uncertainty.

The passive approach has the advantage over the
corresponding active approach that it can achieve
robustness in the detection procedure in spite of the
number of uncertain parameters in the model, and
without using any approximation based on the
simplification of the underlying parameter
representation (Gertler, 1998). The passive approach
based on adaptive thresholding is based not in
avoiding the effect of uncertainty in the residual
through perfect decoupling, but in propagating the
parameter uncertainty to the residual, and then
bounding the residual uncertainty using an interval.
Then, while the residual
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no fault can be signalled, because the residual value
can be due to the parameter uncertainty. Of course,
this approach has the drawback that faults producing
a residual deviation smaller than the residual
uncertainty due to parameter uncertainty will be
missed.

3. PASSIVE ROBUSTNESS BASED ON
INTERVAL PARITY EQUATIONS

3.1 ARMA interval parity equations

Considering equations (7) and (8) with W(z)=1:
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a vector of residuals which are computationally
autoregressive-moving average (ARMA) is obtained.
This vector is known as ARMA parity equations or
residuals. This approach is also known as the
simulation approach because the state estimation is
based only in the inputs and in the model, i.e., it is a
open-loop approach.

Considering now ARMA parity equations given by
(10), without noise, faults and disturbances, only
with modell ing errors
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Then, while:
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no fault can be signalled. The  evaluation of (12) can
be done by performing a worst-case simulation using
the system nominal model M(z) and the modell ing
errors ∆M(z).  The problem of worst-case simulation
has been studied extensively and from different fields
of research: Qualitative Reasoning, Validated
Solution of Differential Equations and Automatic
Control.  Here, the approach proposed by Puig
(1999) will be presented for a SISO system.
Considering a SISO system model described by a
discrete-time transfer function:
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with [ ]+−∈ iii g,gg for i=1,...,n and [ ]+−∈ jjj h,hh for

j=1,...,m. Then, using the canonical observer form in
state-space of (13), at every time instant k the interval

for the predicted measure, [ −
kŷ , +

kŷ ], can be
computed solving the following optimisation
problems:
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with i=1,...,n and j=1,...,m.  And  analogously for
−
kŷ  substituting max for min in (14).

3.2 MA interval parity equations

On the other hand, considering equations (8) and (9)
with W(z)=1, the following vector of residuals can be
obtained:
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where it has been used (1). These equations are
moving average (MA), so they are called MA parity
equations or residuals. This approach is also known
as the prediction approach, and it is a closed-loop
approach. It is based on building a simulator in which
the previous state estimation are replaced by the
measured state.

Considering now MA parity equations given by (19),
without noise, faults and disturbances, only with
modell ing errors
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Then, while
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no fault can be signalled. The  evaluation of (17) can
be done by performing a worst-case prediction using
the system nominal model, G(z) and H(z),  and the
modell ing errors, ∆G(z) and  ∆H(z). Here, the
approach proposed by Puig (2000) will be presented
for a SISO system. Then, using (13), (17) can be
rewritten as
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and at every time instant k, the interval for the

predicted measure, [ −
kŷ , +

kŷ ], can be computed
solving the following optimisation problems:
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subject to:

[ ]+−∈ iii g,gg  and [ ]+−∈ jjj h,hh  with i=1,...,n and

with j=1,...,m. And analogously for  −
kŷ  substituting

max for min in (19).

4. PASSIVE ROBUSTNESS BASED ON
INTERVAL OBSERVERS

The ARMA parity equations are based on the
simulation of the system behaviour. Then, the
residual is generated by comparing the simulated
behaviour with the real behaviour, expecting to be
zero in the absence of noise and faults. However, in
general this is not true, due to the actual system and
its simulated behaviour are not initiali sed identicall y
and due to the unmodeled dynamics. It is generall y
possible to force the convergence of the simulator
adding a proportional feedback to the simulator
equations, building an observer. This approach is
known as the observer (or estimation) approach, and
it is a closed-loop approach.

Considering now the observer equation, without
noise, faults and disturbances, only with modell ing
errors:
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where: K is the observer gain and  it has been
designed for the nominal case guaranteeing
acceptable performance for all 

��
∈ . Then, the

evaluation of the interval for estimated

measurements: [ −
kŷ , +

kŷ ] in order to evaluate the

interval for residuals: [ −
kr , +

kr ] can be done by
means fo a worst-case estimation. Worst-case
estimation can be formulated as a worst-case
simulation. Using (20), as the expression of the
estimator model, it can be reorganised as:
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where: KCAA −=o , [ ]KBB =o  and
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o
k yuu =  . Then using (21), the problem of

worst-case estimation, i.e., the problem of

determining [ ]+−
kk ˆ,ˆ xx  can be solved with the same

algorithm used for worst-case simulation presented in
(14).

5. COMPARING THE DIFFERENT INTERVAL
BASED APPROACHES

Once the different interval based approaches have
been presented they will be compared qualitatively.

5.1 Computational complexity

When extending simulation and estimation
approaches to the interval case, two new problems
appear: the problem of propagation of uncertainty
(wrapping effect) (Moore,1966) and the problem of
range evaluation  of a interval function (global
optimisation) (Hansen,1992). The first problem is
related to the use of a crude approximation (a box)
for the real state space region. It can be avoided
completely referring all computations to the initial
state or in an approximate way using a sliding
window (Puig,1999). The second problem can be
viewed as a global optimisation problem that could
be solved with rigorous global search algorithms
(Puig,1999). On the other hand, the extension of
prediction approach to the interval case is not
affected by the wrapping effect due to it do not use
previous state estimations. Moreover, in this case the
associate optimisation problem is linear being
possible to be solved using linear programming (i.e.,
the simplex algorithm). As a conclusion, prediction
approach is the less computationally complex, while
the two other approaches have a similar
computational complexity.

5.2 Sensitivity to model errors and initial conditions

The simulation approach is very sensiti ve to the
unmodeled dynamics and the usually unknown initial
conditions because no correction with measures is



added, tending to diverge very easil y. The two other
approaches avoid this problem because of the use of
measures to correct the prediction or estimation.

5.3 Sensitivity to faults

On the other hand, the simulation approach is the
most persistently sensitive to faults in the sense that
when a fault appears it signals its existence
constantly,  although it is very conservative (thick
envelopes due to no correction with measures is
introduced). On the other hand, the two other
approaches are less conservative (tighter envelopes
thanks to the correction with measures) and very
sensitive to faults when they appear, but also tend to
follow the faulty system, especiall y if the fault is in
the sensor used to correct the prediction/estimation.
When prediction or  estimation approach is used a
bank of observers (Frank,1988) or a set of structured
residuals (Gertler,1998) must be used to decouple the
faults in the sensor used to correct the
estimation/prediction from the plant faults.

5.4 Sensitivity to noise

The prediction approach because substitutes the
estimation of the state by its measure is very sensitive
to noise. The observation approach is less sensitive
because the correction of the estimated state is partial
and controlled by the observer gain. Finall y, the
simulation approach is the most insensitive of the
three approaches to the noise effect because no
correction of the estimated state is introduced. To
deal with the noise, they should be complemented
with approaches based on statistical tests, as in the
case of the classical fault detection methodologies
based on numbers instead of intervals (Bassevill e,
1993).

6. APPLICATION EXAMPLE

The application example, proposed in this paper, to
test in simulation the different proposed approaches
to robust fault detection, deals with an industrial
smart actuator consisting of a flow servovalve driven
by a smart positioner, intended to be used as a FDI
benchmark in the context on the European
DAMADICS project. The smart actuator consists of
a control valve, a pneumatic servomotor and a smart
positioner (Fig. 1). Using identification techniques
based on least-squares,  a discrete-time model for
booster, E/P transducer, servomotor and
displacement transducer has been obtained. Using
physical modell ing, the following structure for the
model has been derived:
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where: X(z) is the position of the valve measured by
the displacement transducer (in volts), U(z) is  the
output of the PID controller (in volts).
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Fig. 1  DAMADICS smart actuator

Using the model (22) with parameters in their
corresponding 99% confidence intervals, the
corresponding worst-case simulation, prediction and
estimation (observer gain K=[0.5,0.05]) of the smart
positioner when operating in closed loop (Fig. 1)
when applying a step set-point of 0.0095m  under
normal operation conditions (without fault) until
k=150 are presented in Fig. 2, Fig. 3 and Fig. 4,
respectively. At k=150, an abrupt additive fault of
size 0.0025 (sensor bias) appears in the displacement
sensor. It can be observed some of the properties of
the approaches proposed in this paper:  the prediction
(Fig. 3) and the observation approach (Fig. 4) detect
the fault when it appears, but after some samples due
to these approaches use the faulty sensor to correct
the prediction/observation, they tend to follow it and
after some samples disappears the fault indication.
On the other hand, the approach based on simulation
(Fig.2) because it does not use the sensor
measurement, once the fault appears, it is indicated
permanently. It also can be observed that the tighter
confidence intervals for the predicted normal
behaviour are the ones produced by
prediction/observation while the ones produced by
simulation are very wide due to in the first two
approaches sensor measurements are used to correct
the predicted behaviour.
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Fig. 2 Fault detection using ARMA interval parity
equations (worst-case simulation)
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Fig. 3 Fault detection using MA interval parity
equations (worst-case prediction)
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Fig. 4 Fault detection using interval
 observers (worst-case estimation)

7. CONCLUSIONS

In this paper, two approaches to passive robust fault
detection have been presented:  interval parity
equations and interval observers. After presenting
how faults, disturbances and modell ing error affect
the residuals, classical approaches to fault detection
based on parity equations and observers have been
adapted in the case of parameter structured
uncertainties in the model, and more specificall y, in
the case of using interval models. Once presented the
different approaches, they are compared presenting
their benefits and drawbacks. Finall y, the proposed
methods for passive robust fault detection have been
tested and compared using an industrial actuator used
as FDI benchmark in the European project
DAMADICS.

ACKNOWLEDGMENTS

This paper is partiall y supported by the Spanish
CICYT under contract TAP99-0748, by the CIRIT of
the Generalitat of Catalunya (ref. 1999SGR00134)
and by DAMADICS FP5 European Research
Training Network (ref. ECC-TRN1-1999-00392).

REFERENCES

Adrot, O., Maquin, D. and J. Ragot (2000).
“Bounding  Approaches to Fault Detection of
Uncertain Dynamic Systems” . IFAC
SAFEPROCESS’00. Hungary.

Armengol, J., Vehi, J., Travé-Massuyès, L. and M.A.
Sainz, (2000). “ Interval Model-Based Fault
Detection using Multiple Sliding Windows” .
IFAC SAFEPROCESS’00. Hungary.

Bassevill e, M. and I.V. Nikiforov (1993). “Detection
of Abrupt Changes: Theory and Application” .
Prentice Hall.

Chen J. and R.J. Patton (1999). “Robust Model-
Based Fault Diagnosis for Dynamic Systems” .
Kluwer Academic Publishers.

Clark R.N. (1989). “State estimation for instrument
fault detection”. In Patton RJ, Frank PM, Clark
RN (eds). “Fault diagnosis in dynamic systems,
theory and application”. Prentice Hall ,
Englewood Cli ffs, NJ.

Ding X. and P.M. Frank (1991). “Frequency domain
approach and threshold selector for robust model-
based fault detection and isolation”. Proc
IFAC/IMACS SAFEPROCESS ’91. Germany.

Emami-Naemi A, M.M. Akhter and S.M. Rock
(1988). “Effect of model uncertainty on failure
detection: the threshold selector” . IEEE
Transactions on Automatic Control, AC-33, p.
1106-1115.

Escobet, T., Travé, L., Tornil, S. and J. Quevedo
(2001). “Fault detection of a gas turbine fuel
actuator based on qualitative causal models".
ECC'01. Portugal.

Gertler J.J. (1998). “Fault Detection and Diagnosis in
Engineering Systems” .  Marcel Dekker.

Hansen, E. (1992). “Global Optimization using
Interval Analysis” . Marcel Dekker, New York.

Horak, D.T. (1988). “Failure detection in dynamic
systems with modell ing errors” J. Guidance,
Control and Dynamics, 11 (6), 508-516.

Moore, R.E (1966). “ Interval analysis” . Prentice
Hall .

Ploix, S., Adrot, O. and J. Ragot (2000). “Bounding
Approaches to the Diagnosis of Uncertain Static
Systems” . IFAC SAFEPROCESS’00. Hungary.

Puig, V., Saludes, J. and J. Quevedo (1999). “A new
algorithm for adaptive threshold generation in
robust fault detection based on a sliding window
and global optimisation". ECC'99. Germany.

Puig, V., Quevedo, J. and S. Tornil (2000). “Robust
Fault Detection: Active vs Passive Approaches”.
IFAC SAFEPROCESS’00. Hungary.

 Travé-Massuyes, L. and R. Milne (1997). “TIGER:
Gas Turbine Condition Monitoring using
Qualitative Model Based Diagnosis”. IEEE
Expert Intelligent Systems and Applications,
May-June.


