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Abstract: The problem of robustness in fault detedion has been treated basically
using two kinds of approaches: actives and passves. Most of the literature in robust
fault detedion is focused on the problem of active approach based on decoupling the
effeds of the uncertainty from the effects of the faults on the residual. On the other
hand, the passve approach is based of propagating the dfect of the uncertainty on
the residuals and then using adaptive thresholds. In this paper, the passve approach
based on adaptive thresholds produced using a model with uncertain parameters
bounded in intervals, also known as an “interval mode”, will be presented in the
context of parity equations and olservers methodologies, deriving their
corresponding interval versions. Finally, an example based on an industrial actuator
usaed as a FDI benchmark in the European projed DAMADICS will be used for
testing and comparing the proposed approaches. Copyright © 202 IFAC
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1. INTRODUCTION

Model-based fault detedion is based on the use of
mathematicd models of the monitored system. The
better the modd used to represent the dynamic
behaviour of the system, the better will be the chance
of improving the reliability and performance in
deteding faults. However, moddling errors and
disturbances in complex engineging systems are
inevitable, and hence there is a neaed to develop
robust fault detedion algorithms. The robustness of a
fault detedion system means that it must be only
senditive to faults, even in the presence of model-
redity differences (Chen,1999. One of the
approaches to robustness is based on generating
residuals which are insengitive to uncertainty, while
at the same time senditive to faults. This approach is
known as active and it has been extensively
developed these lagt years for several reseachers
using different techniques: unknown input observers,

robust parity equations, H.., etc. In the bodk of Chen
and Patton (1999 there is an excdlent survey of the
active approach. On the other hand, thereis a second
approach, called passive, that enhances the
robustness of the fault detedion system at the
dedsion-making stage, mainly using an adaptive
threshold.

According to Gertler (1998, there is no agorithm
which is robust under arbitrary mode error
conditions. To design an agorithm for robustness
some rather detailed information is necessary about
the nature of erors and uncetainties, and such
information is sddom available. But even if it is,
what cen be achieved is rather limited. Generaly
perfect decoupling of the residuals from
uncertainties it is only possible in a limited numnber
of model parameters. Uncertainty can be located in
the parameters (structured or parametric) or in the
structure of themodd (unstructured). For the ase of
structured uncertainty with unlimited number of



uncertain parameters, passve robustness based on
using models with parameter values bounded in
intervals, also known as “interval models’, will be
very suitable as it will be shown. These models can
be ohbtained using identification tedniques that
provides the nominal value and the ®nfidence
interval for every parameter. Actualy, severa
reseach groups actualy are following this approach,
aso known, as the bounding-approach, because of
the use of bounds to describe the uncertainty. To the
best of our knowledge these groups are at University
of Girona (Spain) (Armengol,2000, a LAAS
Toulouse (France  (Trav§1997, a Technical
Universty of Catdonia (Spain) (Puig,199)
(Puig,2000 (Escobet,200)) and at CRAN-Nancy
(France) (Adrot,2000) (Pl0ix,2000). Interval models
have ado been applied successully in fault diagnosis
of gas turbines in European ESFRIT projeds:
TIGER and SHEBA (Travé 1997 (Escobet,2007).

2. ROBUST FAULT DETECTION
Considering a MIMO linear dynamic system in
discrete-time, the nominal input-output relationship,

without faults, disturbances and noise will be

G(2)
H(2)

y(k)=M(z)u(k)= u(k) &

2.1 Faults, Disturbances and Modelling Errors

Introducing now additive disturbances q(k), noises
v(k) and faults p(k), the input-output relationship (1)
can berewritten as

y(k)=M(z)u(k)+Se (z)p(k)+

@
Sp(2Z)a(k)+ Sy (z)v(k)
where: S:(2) is the ombined fault transfer function,
S(2) is the combined disturbance transfer function
and Sy(2) is the combined noise transfer function.

Denocting the actual transfer function of the physical
system, M°(2), then

y(k)=M°(z)u(k)

(€)
=M(2)u(k)+4M(z)u(k)

where AM(z) is the discrepancy between the

model and the true system. It represents two
conceptually different situations a parametric (or
multiplicative) fault and a modelling error. The
underlying parameters approximation alows the
appropriate decmposition between parametric faults
and moddling errors (multiplicative disturbances)
(Gertler,1998):

MM (Z)u(k)=AM g (z)u(k)+AM 5 (z)u(k) ”
=Ng(2)A0 + N (2)A0, @
where: AG- is a parametric fault and A6 is a

parametric modelling error. Then, the input-output
relationship (2) can be rewritten as

y(k)=M(z)u(k)+Se(z)p(k)
+Ng (k)A0e +Sp(z)q(k) ®)
+Np(k)A8p + Sy (2)v(k)

2.2 Residual generation
The generic form of aresidual generator is
r(k)=V(z)u(k)+W(z)y(k) ()

where: r(K) is the vedor of residuals, V(2) and W(2)
are transfer functions. However, (6) is not necessarily
aresidual generator. To be aresidual generator to has
to return zero when all unknown inpus are zero, that
is, when (1) holds. Then,

r(k) =W(z)[y(k)-M(2u(k)] @

Thisform is also known as the computational form.
Now, substituting y(k)—-M(z)u(k) by (5) yieds

r(k)=W(z)[ Se(z)p(k)+Ng(k)A0e
+Sp(2)a(k)+Np(k)Afp + Sy (Z)v(k)]

This form is known as the internal or unknown-
input-effect form of the generic residua generator,
showing how the residuals depend on faults
disturbances, modelling errors and noise.

2.3 Robustness Isaues

Idedlly, the residuals $ould only be affeded by the
faults. However, the presence of disturbances, noise
and moddlling errors causes the residuals to become
nonzero and thus interferes with the detedion of
faults. Therefore, the fault detedion procedure must
be robust in the face of these undesired effects.
Rohustness can be achieved in the residual
generation (active robustness) or in the dedsion
making stage (passive robustness), as it has been
introduced in Sedion 1. The passve approach rest on
the fact that the uncertainty caused by model errors
depends on the operating conditions. If it may be
possble to modd this dependence theoreticdly or
empiricdly, then the test thresholds could be
changed accordingly.  Adaptive  thresholding
tedhniques were first proposed by Clark (1989, who
suggests an empirical relation between the operation
point and the arresponding detedion threshold.
Further approaches are due to Emami-Naemi (1988),



who develops a theoreticd reation between the
operation point, the mode uncetainty and the
detedion threshold. This approach is based in H.
techniques and it was further explored by Ding and
Frank (1991). Ancther approach for adaptive
threshold generation was proposed by Horak (1988
and it is based on a dynamicd optimisation asaiming
parametric uncertainty.

The pasdve approach has the advantage over the
corresponding active approach that it can achieve
robustnessin the detedion procedure in spite of the
number of uncertain parameters in the model, and
without using any approximation based on the
amplification of the wunderlying parameter
representation (Gertler, 1998). The passve approach
based on adaptive thresholding is based not in
avoiding the dfect of uncertainty in the residua
through perfed decoupling, but in propagating the
parameter uncertainty to the residual, and then
bounding the residual uncertainty using an interval.
Then, while theresidua

(k) =y)-y00f ] @

no fault can be signalled, because the residual value
can be due to the parameter uncertainty. Of course,
this approach has the drawback that faults producing
a residual deviation smaler than the residua
uncertainty due to parameter uncertainty will be
missed.

3. PASSVE ROBUSTNESSBASED ON
INTERVAL PARITY EQUATIONS

3.1 ARMA interval parity equations
Considering equations (7) and (8) with W(z)=1:

r(k)=y(k)-M(z)u(k)=
Se(Z)p(k)*+Ng(k)A0e +Spa(k)+ 0
Np(k)A0p + Sy (2)v(k)

a vedor of resduals which are @mputationally
autoregressve-moving average (ARMA) is obtained.
This vedor is known as ARMA parity equations or
resduals. This approach is also known as the
simulation approach because the state estimation is
based only in the inputs and in the modd, i.e, itisa
open-loop approach.

Considering now ARMA parity equations given by
(10), without noise, faults and disturbances, only
with moddlling errors

r(k)=y(k)-M(z)u(k) =
AM(z)u(k)=Np(k)A0,

Then, while:
r(k) <[aM(Z)u(k) =[N (K)Mo| @2

no fault can be signdled. The evaluation of (12) can
be done by performing aworst-case simulation using
the system nominal model M(2) and the modelling
errors AM(z). The problem of worst-case simulation
has been studied extensively and from different fields
of research: Qualitative Reasoning, Validated
Solution of Differential Equations and Automatic
Control. Here, the approach proposed by Puig
(1999 will be presented for a SISO system.
Considering a SISO system model described by a
discrete-time transfer function:

-1 -n

0,2 +..+9,2
k)= - —u(k 13
k) 1+hzt+. . +h,z " (k)

with g; D[g;,gr] for i=1,...n and h; D[h;,hj*] for
j=1,...,m. Then, using the canonicd observer form in
state-space of (13), at every timeinstant k the interval
for the predicted measure, [V, ,Vc], can be

computed solving the following optimisation
probems:

gy =malC[ Atx_ + AL IBu,_ +-+Bu,])
subjed to: (14

Xg-L U XI:—L1XI:r—L] » Oi D[gi_agi+] +h; D[hj_,hfr
with i=1,...,n and j=1,...m. And analogously for
¥ substituting max for minin (14).

3.2 MAinterval parity equaions

On the other hand, considering equations (8) and (9)
with W(2)=1, the following vedor of residuals can be
obtained:

r(k) = H(2)y(k)-G(2)u(k) =
H(2)[Se(2)p(k) + Ng (k)40

(19
+Spa(k )+ Np(k)A0p + Sy (z)v(k)]

where it has been used (1). These auations are
moving average (MA), so they are clled MA parity
equations or residuals. This approach is also known
as the prediction approach, and it is a closed-loop
approach. It is based on buil ding asimulator in which
the previous gdate etimation are replaced by the
measured state.

Considering now MA parity equations given by (19),
without noise, faults and dsturbances, only with
modelling errors



r(k)=H(z)y(k)-G(z)u(k) =
AG(Z)u(k) = AH (z)y(k) (16)

Then, while
r(k) <|AG(Z)u(k)=-AH(z)y(k)| (17

no fault can be signdled. The evaluation of (17) can
be done by performing a worst-case prediction usng
the system nominal model, G(z) and H(2), and the
modelling errors, AG(z) and AH(2). Here, the
approach proposed by Puig (2000 will be presented
for a SISO system. Then, using (13), (17) cen be
rewritten as

r(k)=H(z)y(k)-G(z)u(k)=
(1+h,z7 +--+h 2™ )y(k)-
(g1t +---+g,z " u(k)

(19

and at every time ingstant k, the interval for the
predicted measure, [, .,V ], can be omputed
solving the foll owing optimisation problems:

%i =maxgz giU(k—i)—Zhjy(k—j)E (19)
i= 1= C

subjed to:

gi D[g(,gﬁ] and h; D[hj‘,hf] withi=1,...,nand

with j=1,....,m. And analogoudy for §, substituting
max for minin (19).

4. PASSVE ROBUSTNESSBASED ON
INTERVAL OBSERVERS

The ARMA parity equations are based on the
smulation of the system behaviour. Then, the
residual is generated by comparing the smulated
behaviour with the red behaviour, expeding to be
zero in the absence of noise and faults. However, in
general thisis not true, due to the actua system and
its smulated behaviour are not initialised identicdly
and dwe to the unmodeled dynamics. It is generally
possble to force the mnvergence of the smulator
adding a proportional feedback to the simulator
equations, building an observer. This approach is
known as the observer (or estimation) approach, and
it isa closed-loop approach.

Considering now the observer equation, without
noise, faults and disturbances, only with modelling
erors.

Kir1 = A(O)Xy +B(O)uy + K( Y = Vi)
Y = C(0)Xy (20
006

where: K is the observer gain and it has bee
designed for the nominal case guaranted@ng
acceptable performance for al ¢0@ . Then, the
evaluation of the interval for estimated

measurements. [V, , ¢ ] in order to evaluate the

interval for residuals [r, ,r,] can be done by

meas fo a worst-case estimation. Worst-case
estimation can be formulated as a worst-case
smulation. Using (20), as the expresson of the
estimator model, it can be reorganised as:

Kper = AKXy + B Uy 1)

where A, =A-KC, B,=[B K] and

u? =[u, vJ' . Then wsing (21), the problem of
worst-case  etimation, i.e, the probem of

determining [X; ,X;] can be solved with the same

algorithm used for worst-case simulation presented in
(14).

5. COMPARING THE DIFFERENT INTERVAL
BASED APFROACHES

Once the different interval based approaches have
been presented they will be compared qualitatively.

5.1 Computational complexity

When extending dSmulation and estimation
approaches to the interval case, two new problems
appea: the problem of propagation of uncertainty
(wrapping effect) (Moore, 1966 and the problem of
range evaluation of a interval function (global
optimisation) (Hansen,1992. The first problem is
related to the use of a crude approximation (a box)
for the real state space region. It can be avoided
completely referring al computations to the initia
state or in an approximate way using a dliding
window (Puig,1999. The semnd probem can be
viewed as a global optimisation probem that could
be solved with rigorous global seach agorithms
(Puig,1999. On the other hand, the extenson of
prediction approach to the interval case is not
affeded by the wrapping effect due to it do not use
previous gate estimations. Moreover, in this case the
asciate optimisation probdem is linea being
possble to be solved using linear programming (i.e.,
the simplex algorithm). As a @nclusion, prediction
approach is the less computationally complex, while
the two aher approaches have a smilar
computational complexity.

5.2 Sengtivity to model errors andinitial conditions
The simulation approach is very sendtive to the

unmodeled dynamics and the usually unknown initial
conditions because no corredion with measures is



added, tending to diverge very easily. The two aher
approaches avoid this problem becuse of the use of
measures to corred the prediction or estimation.

5.3 Sendtivity to faults

On the other hand, the simulation approach is the
most persistently sensitive to faults in the sense that
when a fault appeas it dgnals its existence
constantly, although it is very conservative (thick
envelopes due to no corredion with measures is
introduced). On the other hand, the two aher
approaches are less conservative (tighter envelopes
thanks to the corredion with measures) and very
sensitive to faults when they appear, but aso tend to
follow the faulty system, espedally if the fault is in
the sensor used to corred the prediction/estimation.
When prediction or estimation approach is used a
bank of observers (Frank,1988) or a set of structured
residuals (Gertler,1998 must be used to decuple the
faults in the sensor used to corred the
estimation/prediction from the plant faults.

5.4 Senditivity to noise

The prediction approach because substitutes the
estimation of the state by its measure is very sensitive
to noise. The observation approach is less nsitive
because the @rredion of the estimated state is partial
and controlled by the observer gain. Finaly, the
simulation approach is the most insensitive of the
three approaches to the noise dfed because no
corredion of the estimated state is introduced. To
deal with the noise, they should be @mplemented
with approaches based on datistical tests, as in the
case of the dasdcal fault detedion methodologies
based on numbers ingead of intervals (Bassvill e,
1993.

6. APRLICATION EXAMPLE

The application example, proposed in this paper, to
test in simulation the different proposed approaches
to robust fault detedion, deals with an industrid
smart actuator consisting of a flow servovalve driven
by a smart positioner, intended to be used as a FDI
benchmark in the ntext on the European
DAMADICS project. The smart actuator consists of
a control valve, a pneumatic servomotor and a smart
positioner (Fig. 1). Using identification tedhniques
based on least-squares, a discrete-time modd for
booster, E/P  transducer, servomotor and
displacement transduce has been obtained. Using
physical moddlling, the following structure for the
modd has been derived:

X(z) _  bz® +b,z+b,

G(z)=
(2 U(z) Z2°+a,z°+a,z+a,

(22)

where: X(z) is the position of the valve measured by
the displacement transducer (in volts), U(z) is the
output of the PID controller (in volts).

Positioner

Fig. 1 DAMADICS smart actuator

Using the modd (22) with parameters in their
corresponding  99%  confidence intervals, the
corresponding worst-case simulation, prediction and
estimation (observer gain K=[0.5,0.05]) of the smart
positioner when operating in closed loop (Fig. 1)
when applying a step set-point of 0.0095m under
normal operation conditions (without fault) until
k=150 are presented in Fig. 2, Fig. 3 and Fig. 4,
respedively. At k=150, an abrupt additive fault of
size 0.0025 (sensor bias) appeas in the displacement
sensor. It can be observed some of the properties of
the approaches proposed in this paper: the prediction
(Fig. 3) and the observation approach (Fig. 4) deted
the fault when it appeas, but after some samples due
to these approaches use the faulty sensor to corred
the prediction/observation, they tend to follow it and
after some samples disappeas the fault indication.
On the other hand, the approach based on simulation
(Fig.2) becuse it does not use the sensor
measurement, once the fault appeas, it is indicaed
permanently. It also can be observed that the tighter
confidence intervals for the predicted normal
behaviour ae the ones produced by
prediction/observation while the ones produced by
smulation are very wide due to in the first two
approaches snsor measurements are used to corred
the predicted behaviour.
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Fig. 2 Fault detedion usng ARMA interval parity
equations (worst-case simul ation)



Worst-Case Prediction
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Fig. 3 Fault detedion usng MA interval parity
equations (worst-case prediction)
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Fig. 4 Fault detedion using interval
observers (worst-case estimation)

7. CONCLUSIONS

In this paper, two approaches to passve robust fault
detedion have been presented: interva parity
equations and interval observers. After presenting
how faults, disturbances and modelling error affect
the residuals, clasdcd approaches to fault detedion
based on parity equations and observers have been
adapted in the @se of parameter structured
uncertainties in the modd, and more spedfically, in
the @se of using interval models. Once presented the
different approaches, they are compared presenting
their benefits and drawbacks. Finaly, the proposed
methods for pasdve robust fault detedion have been
tested and compared using an industrial actuator used
as FDI benchmark in the European projed
DAMADICS.
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