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Abstract: A model for the dynamics of a four rotor vertical take-off and landing (VTOL)
vehicle known as an X4-flyer is proposed. The model incorporates the airframe and
motor dynamics as well as aerodynamic and gyroscopic effects due to the rotors for
quasi-stationary flight conditions. A novel control strategy is proposed for configuration
stabilization of quasi-stationary flight conditions. The approach taken involves separating
the rigid body (airframe) dynamics from the motor dynamics, developing separate control
Lyapunov functions for the coupled systems and then bounding the perturbation error due
to the interaction to obtain strong practical stability of the complete system.
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1. INTRODUCTION as well as aerodynamic and gyroscopic effects due to
the rotors. The fixed pitch, rigid rotors and four motor

Recent advances in computer and sensing technology@ctuation leads to significant differences in the model
and the associated reduction in cost of such systemsproposed to other VTOL systems previously studied in
have made physical construction of autonomous mo-the literature (Hauseet al, 1992, Kooet al, 1998).
bile robotic systems possible at a reasonable price. Au-The control design proposed is based on separating the
tonomous robotic cars and trucks have been under inves¥igid body (airframe) dynamics from the motor dynam-
tigation for some years and, as well as the developmentcs, developing separate control Lyapunov functions for
of considerable body knowledge, there now several suc-the coupled systems and then bounding the perturbation
cessful commercial systems. More recently, interest is€rror due to the interaction to obtain strong practical
growing in more complicated systems such as submarinestability of the complete system. The control strategy
vehicles (Eglanet al., 1996) and unmanned aerial vehi- is novel in two ways. Firstly, the system dynamics are
cles (Kooet al,, 1998), because of their commercial pos- controlled in two separate dynamic systems correspond-
sibilities. Fixed-wing unmanned aircraft are being rou- ing to the rigid body dynamics and the motor dynamics.
tinely used for military and meteorological purposes and The separate system errors are combined into a single
have been in service for years. The vehicle considered incontrol Lyapunov function via a transient error bounding
this paper is an autonomous hovering system, capable ofirgument. This approach avoids the either the necessity
vertical take-off, landing and quasi-stationary (hover and of including a dynamic extension in the controller design
near hover) flight conditions. In this paper, we propose (Koo et al, 1998, Mahonyet al, 1999) or the need
a model for the dynamics of a four rotor vertical take- to use approximate linearization, saturated control or
off and landing (VTOL) vehicle known as an X4-flyer. dynamic reduction (high gain) controllers (Frazzeit
The model includes the airframe and motor dynamics al., 2000, Teel 1996, Sepulche¢ al, 1997). The closed



loop systemis practically stablefor trajectorytracking
of the centerof massof therobotic vehicle.The second
novel aspectof the control is the use of a quaternion
representatiomf the rotationerrorin orderto obtaina

simple,smoothcontroldesignthatcontainsonly asingle
singularity in error spacecorrespondingo an error of

180 degreesin the rotation. This is a considerablead-
vanceover earlierwork by the authorsandcompliments
recentwork by Frazzolietal.(Frazzolietal., 2000).The
approachtaken is basedon earlier work by Eglandet
al.(Egelancetal., 1996).

2. THE X4-FLYER MODEL

The X4-flyer! is a systemconsistingof four individual
electricalfansattachedto a rigid crossframe. It is an
omnidirectional(vertical take-off and landing) VTOL
vehicleideally suitedto stationaryand quasi-stationary
flight conditions.Control of an X4-flyer is achieved by
differentialcontrol of thethrustgeneratedy eachelec-
tric fan. Up down motion is controlledby collectively
increasingor decreasinghe power of all four motors.
Sideavaysmotionis achieved by pitching in the desired
direction and increasingcollective thrustto overcome
the tendeng of the vehicle to side-slip towards the
ground (cf. Figure 1). The rolling motion is achieved
by increasingfor example,the power of the left rotor
and decreasinghat of the right rotor in proportionto
presere total collective thrust. By the sameprinciple,
differentialcontrolof theforwardandrearrotorsleadsto
control of the pitchingmotion of the vehicle.The ‘yaw’
controlmechanisnis moresubtle Whenarotorturns,it
hasto overcomeair resistanceThe reactie force acts
on the rotor in the direction oppositeto the rotation
of the rotor. In the X4-flyer both setsof front-rearand
left-right rotorsturn in oppositedirection(cf. Figurel).
However aslong asall rotorsproducethe sametorque,
morepreciselyproducethe samereactize torque,which
is mostly a function of speedf rotationandrotor blade
pitch, the sum of all air resistancess zero and there
is no horizontalrotation. If one setof rotors increase
their speedthe inducedtorquewill causethe X4-flyer
to rotatein the directionof theinducedtorque.lt is im-
portantto notethatbecausef the* x” arrangementhis
operatiorhasno effectontranslationin 2 or y direction.
The effect on up/dovn motion canbe compensatety
reducingthe pitch or speedf the otherdiagonalpair.

The following dynamic model of an X4-flyer is pre-

sentedfor the simple casewhere the rotors are fixed

pitch, rigid rotorsandthrustcontrolis obtainedthrough
controlof thetorquetothemotors.LetZ = {E,, E,, E.}
denotea right-handinertial framesuchthat £/, denotes
the vertical directiondowvnwardsinto the earth.Let the

vector¢ = (x,y, z) denotethe positionof the centreof

massof the airframein the frameZ relative to a fixed

origin0 € Z. Let A = {E¢, E, E$} bea (right-hand)
bodyfixedframefor theairframe.The orientationof the

rigid body is given by a rotationR : A — Z, where
R € SO(3) is anorthogonakotationmatrix.

! Theauthorsproposeheterm‘X4-flyer’ asasimple,highly descrip-
tive namethatwill applyto awide rangeof four rotor flying robots.

Fig. 1. The four rotors hover systemwith Force and
TorqueControl.

Let v € 7 denotethe linear velocity expressedn the
inertial frameand () € A denotethe angularvelocity
of the airframeexpressedn the body fixed frame. Let
m denotethe massof the rigid objectandI e R3*3
denotethe constantinertia matrix aroundthe centreof
mass(expressedn the body fixed frame A). Newton’s
equationof motionyield thefollowing dynamicmodel
for themotionof theairframe:

E=v (1)
mv = mges + RF (2)
R = Rsk(9), 3)
IN=-QxIN+T. (4)

Thenotationsk(2) denoteghe skew-symmetricmatrix
suchthatsk(Q)v = Q x v for the vectorcross-product
x andary vectorv € R®. ThevectorF' € A combines
the principalnon-conserative forcesappliedto the X4-
flyer airframeincludingthrusts(generatedby the rotors
cf. Figure 1) anddragtermsassociatedvith the rotors
downwashontheairframe.Thetorquel® € A is derived
from differential thrust associatedvith pairs of rotors
alongwith aerodynamieffectsandgyroscopiceffects.

Due to therigid rotor constraintthe dynamicsof each
rotor disk aroundits axis of rotation can be treated
as a decoupledsystemin the generalizedvariable w;

denotingangularvelocity of arotor aroundits axis. The
torque exerted by eachelectrical motor is denotedr;.

The motor torqueis opposedby an aerodynamiarag
Q;. Newton’s equationsare

Lo=7n-0Q; )

wherel, is the momentof inertia of a rotor aroundits
axis.

Thelift generatedby arotorin freeair maybemodelled
as

fi= —bw?eg

whereb > 0 is a proportionalityconstantdependingn
the density of air, the cube of the radius of the rotor
blades,the numberof blades,the chord length of the
blades,the lift constant(linking angleof attackof the
blade airfoil to the lift generated)the drag constant
(associatedvith the airframe)and the geometryof the



wake? . For quasi-stationarynanoeuvres free, still air
it is a reasonableassumptiorthat the scalarb > 0 is
indeeda constant.

The reactie torque (due to rotor drag) generatedy a
rotorin freeair maybe modelledas

Q; = mﬂf

The constant< dependonceagain on the factorsmen-
tionedabove for rotorthrustandparticularlyonthepitch
angleof therotor blades.

Thethrustappliedto the X4-flyer airframeis

4 4
T=Zfi|=b<2w?> (6)
=1 i=1

Recallingthe discussiormprecedingthe model Eqn’s 1-

4, theaerodynamidorqueinputsappliedto the X4-flyer
structureusingthe combinationof the producedforces
andair resistancearer, = (12,72, 73)

Tt =db (wg - wZ)

=db (w% — w%)

Ty :H(wg—kwi—w%—wg)

whered representshe displacemenbf the rotors with

respecto the centreof massof the X-4 flyer.

Qo 8

T

w

The final torque contrikution to the X4-flyer dynam-
ics comesfrom gyroscopiceffects. Eachrotor may be
thoughtof asarigid disk rotatingaroundthe axis es in

thebody-fixed-framewith angularvelocity zo;. Theaxis
of rotationof therotor is itself moving with theangular
velocity of the airframe. This leadsto the following

gyroscopidorquesappliedto theairframe

4
Ga = — ZIT(Q X 63)’0\—4.
i=1

Basedon the above discussionthe following modelis
proposed:

£=v (7)
U= gez — iTReg (8)

. m
R = Rsk(Q), 9
IN=—-QxIN+ Gy + Ta. (10)
I, =7 — ﬁw?. (12)

The dynamicequationsnay be thoughtof in two parts;
firstly therigid body dynamicsof the airframeEqn’s 7-
10 with inputs (T, 7}, 72, 73) andsecondlythe Eq. 11
that links the motor torqueinputs r; to the rigid body
forcesandtorquesvia the mapping

T ~b —b —b —b w3 w3
| _| 0 d 0 —db @ | _ 4 w?
T db 0 —db 0 w5 w3
o k —k k —k w3 w3

(12)

It is easily verified that the matrix A € R*** defined
aboveis full rankfor b, k,d > 0.

2 For a detaileddiscussiorof the aerodynamianodelof a helicopter
rotorthereadeiis referredto ary standardext onhelicoptermodelling
(cf. for example(Prouty 1995)). A condensedliscussionis givenin
(Mahory andHamel2001).

3. CONTROL DESIGNMETHODOLOGY

In this sectiona backsteppingontroldesignis provided
for the modelEqn’s 7-11 proposedn the previous sec-
tion.

Let £,(t) be the desiredposition trajectory The dy-
namicsassociatedvith tracking sucha trajectoryfully
determinagwo degreesof freedom(pitch androll) in the
attitudeof theairframe.Theyaw of theairframemustbe
separatelhassignedThereis no ‘correct’ way in which
thisassignmenshouldbemade In this papemwe usethe
classical'yaw’, ‘pitch’ and‘roll’ Eulerangles(¢, 6, 1)
commonly usedin aerodynamicapplications(Murray
et al.,, 1994). Although theseanglesare not globally
definedthey provide a suitablelocal representatiorfior
all quasi-stationarynanoeuvrersindertalen by an X4-
flyer. The yaw angletrajectoryis specifieddirectly in
termsof the angle¢4(t). The relationshipbetweenthe
Euleranglesusedandtherotationmatrix is

COCH SpSOCH — CypS¢ CypSeCH + SyS¢
R = CoSp ShSeSp + CyCop CypSeSp — SyCo
—Sg Sy Co CyyCh

(13)
Thetrajectorytrackingcontrol problemconsidereds:

Find a smoothstatic statefeedbak (71, 72,73, 74) de-
pendingonly on the measuable states(¢, &R, Q), the
angularvelocityof ead rotor (zo;) andarbitrarily many
derivativesof the smoothtrajectory (£,(t), ¢4(t)) suh
that the tracking error (£(t) — &q4(t), #(t) — @a(t)) is
asymptoticallystable

Define
01 izg(t) - §d(t)

1 .
(52 ::k—l(v — 5,1) + 51 (14)
wherek, isapositive constantLet S; bethefirst storage
functionfor thebacksteppingrocedurelt is choserfor
thefull lineardynamicsEqn’s 7-8

1 1
S = 5\51|2 + §|52|2. (15)

Takingthetime derivative of S; andsubstitutingfor Eq.
8yields

d 9 9 1 .p, 1 .
. — L . . __T _
dtSl = k1|(51‘ +k1|52| +k1 (52 ( m R63+g€3 fd),

(16)

Fromthe point of view of a classicabacksteppingon-
trol designthe vectorialterm (1/m)T Res is the virtual
input to this stageof the backsteppinglesign.To apply
thisapproachn full generalityit is necessaryo dynam-
ically extendthethrustinputT' in orderthatthevectorial
virtual control assigned(for Eq. 16) can be cascaded
throughthe attitudedynamics(Mahory etal., 1999and
Frazzoliet al., 2000). In the caseof the X4-flyer, the

3 Thefollowing shorthandhotationfor trigonometridunctionis used:

cg :=cos(B), sg:=sin(B), tg:=tan(B).



highly couplednatureof the motor dynamicsthat gen-
erateboth torqueandthrustmeanthat this approachs
not recommendedAlternatively, the vectorialinput can
be split into its magnitudeT’, thatis linked directly to
the motortorquesvia Eqn’s 11 and12, andits direction
Regs, thatdefinetwo degreesof freedomin theairframe
attitudedynamics€Eqn’s 9 and10. AssigningthethrustT
immediatelyandthencontrolling the attitudedynamics
leadsto a designapproachsimilar to those proposed
for theVTOL (Teel1996,Sepulchrestal., 1997).Such
control stratgiesleadto time scaleseparatiorbetween
the attitudeandlinear dynamicsof the airframedynam-
ics andrequiresignificantcontrolresponseén the thrust
input 7". Once again the couplednatureof the motor
dynamicsndicatethatthis approachs notadvised.The
approachtaken in the presentpaperdiscardsthe con-
ceptof exactlinearizationor classicabacksteppingnd
falls backona controlLyapunw functiondesignfor the
full dynamics A backsteppinglesignfor therigid-body
dynamicsof the airframeis undertalen, however, we
do not attemptto directly cancelthe effect of the vir-
tual control errorin therigid-body dynamicswithin the
backsteppingontrol designitself. Rather theseerrors
areleft asperturbationgo therigid-bodydynamicsThe
errorsintroducednto the controldesignarelinearin an
error criterion that forms the basisof a secondcontrol
Lyapunw designfor the motordynamicsEq. 11.

Applying classicalbacksteppingone would assigna
virtual vectorialcontrolfor (1/m)T Res

(TReg)d = mges — méd +m/€1(/€1 + ]Cz)(Sg, ko >0

(17)
Here (T Re3)q denoteshe desiredvectorial controlin-
put. Taking the norm of the right handside of Eq. 17
leadsto

T, = |m963 - méd + mkq (/Cl + k2)52| (18)
Thedesiredrotationmatrix Ry
1
Ryes := ?<TR63)(1 (19)
d

is obtainedby solving for (¢, 6,) using Eq. 13 and
subjectto the constraintgiven by the specificationof
dalt)?.

Substitutingfor Eqn’s 18-19oneobtains

. 1 -
(52 = — k151 — kQ(SQ — —(R - [)Tde€3
mkl
~ L TR, (20)
mkl
where

T=T-Ty;, R=RRY ecS0(3).
From the aborve discussionthe dynamicsof the first
storagefunction Sy (Eg.16) canbeboundedas
d
ES1 < — k1|61 ]* — ko|62|? (21)

| Tl ~ T
—|bs| |IR — I| + ——|6
+mk1|2|‘ |+mk1|2|

4 Thisonly oneof anumberof possibilitiesfor fully determiningRg.

The key point is that R is fully definedby the vectorial constraint
on Rge3 combinedwith someadditionalconstrainthatfixestheyaw

parameter

Notethatthe errorterms|d,|, |7| and|R — I| enterbi-
linearly into thelasttwo termsof this expression.

The next stageof the control designinvolves control-
ling the attitudedynamicssuchthat the error (R — I)
is minimized.Designingcontrollersto stabilizeattitude
dynamicshasbeenanawkwardproblemin recentpapers
(Koo et al., 1998,Mahory etal., 1999, Frazzolietal.,
2000). The key problem comesin finding an elegant
methodof representinghe attitude of the systemthat
doesnot suffer from singularitiesand leadsto a sim-
ple control design.In this paperwe employ a quater
nion representatiomf the rotationin orderto obtaina
globally definedsmoothstatic control for the attitude
dynamicswith a single singularity correspondindo an
attitudeerrorof 180degrees Theattitudedeviation R is
parameterizedby a rotations aroundthe unit vectork.
Using Rodriguesformulaonehas(Murray etal., 1994)

R =1 +sin(3)sk(k) + (1 — cos(%))sk(k)?
Thequaternionslescribinghedeviation R aregivenby
(Egelandetal., 1996):

7 :=sin jl} g 1= COS j
27 2
which aresubjectto the constraint:
7”475 =1 (22)
Thedeviation matrix R is thendefinedasfollows:
R = (5 — )1 + 270" + 2ijosk(7)  (23)
Theattitudecontrol objective is achieredwhen R = I.

It is easyto seefrom Eqn’s 22-23thatthis is equivalent
ton = 0 and7, = 1. Indeed,it maybeverifiedthat

R~ 1|5 = \Jt((R - )T(R — 1) = 2v/205i| (24)

Basedonthisresultthe attitudecontrolobjective usedis
to drive 7] to zero.Deriving (1, 1) yields(Murray etal.,
1994,pg.74)

1

2 ]- ~ ~ g 2 ~ ~
i = 5ol + sk, il = finTQ (25)

where() definestheerrorangularvelocity
Q= Ra(2 - Q) (26)

and €, representghe desiredangular velocity. It is
definedby in AppendixA.

Thevirtual control)” is definedto ensurethefollowing
storagdunctiondecreases,

1,
Wy = §|77\2
Set ~
0 = —2kyn0m
With theabove choiceonehas
. o o Tl _
Wi < ki |71 + flokni e + (k1 + kz)%\nl

wheretheerrorapproximatiorfollows from theerrorin-
troducedn thedefinitionof X in Eq.36ande represents
thefinal errorusedin the procesof backstepping

1
£i= —

Q + . 27
o0, + 7jo7] (27)



to simplify the control designa controlinput lineariza-
tion of equationEg. 10is undertalen.Define

wi=-T1OxIN+T G, +I'7¢  (28)

wherer? is thedesiredtorqueinput. Sincel is full rank
thenthisis certainlyabijective controlinputtransforma-
tion betweenr? andw. With this choiceEq. 10 becomes

() =@+ R 17, (29)

where
W = Rg(w—Q4q)+Rysk(Qq)RYQ, and, 7=r1,—72

The torqueerror 7 actsas a perturbationerror in the
control Lyapuna function for the rigid body dynamics
and will be usedas a basicerror signal for designof

the control Lyapune function for the motor dynamics.
The ‘error’ input @ may be arbitrarily assignedvia its

dependencenw.

Set
~ . 1 ~\ A =9 I__p
w :=2ky | kyTlo — §nosk(n)9 = kniloe + S Q2

— 2k2ij07) — 2k keijge (30)

DefineS; thestoragefunctionfor the attitudedeviation

Ll Lo
Sa = 31P + 5lel. (31)
Taking the deriative of Sy, substitutingfor the deriva-
tive of ¢ andtaking careto identify all termsthat are
dueto the errorapproximatiormadein Eqn’s 36 and29
leadsto

So < — kyfig)il|* — kefigle|?
|

[P
) (nllel + i) + 5

+ (k1 + ko le| |7]

(32)

This completesthe control designfor the attitude dy-
namics.Obsene that all the error termsin this expres-
sion are bilinear in the error variables.Moreover, the
final two termsin the expressiondependon the control
errors|T’| and|7|.

The control designfor the motor actuatorsarebasedon
minimizing the control errors|T'| and |7| for the rigid
bodydynamics.To simplify the notationset

u = (TaT(iaTrfaTg)a

ug = Ty, (70)a: (72)as (73)a)

andud = u — uy. Furthermoresetw = (wy,...,w4),
@? = (@wi,...,w2), Tm = (71,...,74) andIp =
diagI,,...,I.). ThenEq. 11 canbe written in block

form

1pto = 7y — K02

Notethati = A(w? — A~ 'uy). Takingthederivative of
@ it follows that

it = AQQw! (1, — kAT u) — A7 tay).
Set

Tm = KA+ w P Ay — w k@, ky > 0,

1

wherew =" = (wy!, ..., !). Thisleadsdirectly to

= —kyi, (33)

andguaranteethatthe error & convergesexponentially
to zero.

Theoem3.1. Considerthe systemdynamicsdefinedby
Eqgn’s 7-11 along with the control inputs proposedin
the body of the paper Assumethat thereare constants
a,b > 0 suchthat|Ty| > a and|7jy| > b. Let o bean
upperboundon desiredacceleration

&l <o

Let k1, ko betwo positive controlgains(cf. Eqn's 14and
17).Set

1
b=k + k2, € = o keb?(kahnb®ki = 8(g + 0)?)
1
andchooseheremainingcontrolgainsto satisfy
8(g +0)?
k 7
" TkZkh?
ke >0,

2
ky > mT (kzkf(kn + k2k.) + 4(g + 0)2(2v/2kk.

+kyke — 2k%)) .

Then,for ary initial conditionsuchthattheinitial value
of the Lyapuna function

_ 12 g+o
V) = 510)+5:0)+ 51O < (=475
(34)
theLyapuna functionis boundedor all time

V(t) < (ﬁ)z

andis asymtoticallystable.The tracking error (£(t) —
£a(t)) is locally exponentiallystable.

Proof3.2. Let
€= (|61| |52|a |ﬁ|a |€|a |T|a |7-DT € RG

beavectorof absolutesrrorsof the backsteppingrrors.
RecallingEqgn’s 21, 24, 32 and 33, it may be directly
verified that the deriative of the Lyapunw function V'
is boundedy

1% < —eT Ae
where
A=
kq 0 0 0 0 0
2|T, 1
0 ks _M 0 _
mkl 2mk1
2|7, k
o VAT kil 0 —=—— 0
mk Q‘Td| )
_ klijo| 177
0 0 0 k2 — —
o ToT, Tk,
1 k k|n
0 — B k|| - 0
kal 2|Td| 2|T(i{|
I
— k
0 0 0 ik, 0 u

Thequadraticexpression—e” Ae is guaranteedegative
definiteif andonly if thesymmetricmatrix A is positive



definite. This is true if andonly if the principal minors
of A arepositive.

The first two principal minors are positive definite due
to the choiceof k1, k2 > 0. Thethird principal minoris
positive if

2|Ty|?
m2k3ks|ijo[2
RecallingEq. 18 andapplyingtheboundsn thetheorem
statemenbnehas

Td S m(g + U) + mkl(kl + k2)|52|
UsingtheboundEq. 34, it follows that
|Ta| <2m(g+o0).

In additionapplyingthe bound|7y| > b it follows that
choosingk,, superiorto the boundgivenin the theorem
statemenensureghat the third minor of A is positive
definite. Once this choiceis madeit is clear that the
fourth minor is alsopositive definitefor k. > 0.

ey >

The final two minorsare of interestsincethey involve

theinteractiontermsassociateavith theapproximations
madein the virtual control inputs during the control

design.Thus,unlike the casefor classicalbackstepping
designsthedynamicsof T'and7 interactwith all stages
of the error dynamics.However, sincethe control gain

k., usedat this stageis independentof ary further

calculationsit may be chosenarbitrarily and indeed
may even be chosentime varying to avoid robustness
problemsin the asymptoticlimit of the control design.
A more completediscussionof the potential of the

proposedcontrol designis beyond the scopeof this

paper Straightforvard but tedious calculationsshov

that choosingk,, superiorto the bound given in the

theoremstatemenensureghe the final two minors of

A are positive definite. The proof follows by applying

Lyapuna’s directmethod.

Remark3.3. The theoremstatemenincludessimplify-
ing bounds|T,| > a and|ny| > b aswell asa bound
|€4] < o. In practice this coversall situationsin which
onewishesto applythe control design.lt is the authors
opinionthattheseheoreticaboundscanbesignificantly
relaxed, however, suchan analysisis beyondthe scope
of the presenpaper

APPENDIXA

Considerthekinematicsof thedesiredattitude R,
Rd = RdSk(Qd)
FromEqn’'s 3and35, it follows

(35)

R = Rsk(Q))
Deriving the expressiorof R,es (Eq.19) oneobtains
sk(Qq)es = REX, (36)
Where X is definedas known part of < (Rge3). The

dt ~
derivative is not exactly knovn dueto the errorterm T’

in Eq. 20. Direct calculationleadsto the errorbound

d
| X — —(Raes)| < (k1 + k2)

dt [Tl

Recallingthatsk(2,)e; = —sk(e3)2, onehas
Q)= —el RgX, 03 =cTRyX. (37)

This processdeterminesthe first two componentsof

the desiredangularvelocity Q4. To determineQ3 it is

necessaryo recall the kinematicrelationshipbetween
the Euleranglesandtheangularvelocity of arigid body
(cf. for example(Murray etal., 1994)).Onehas

d‘)d 1 0 S,/, Cu';
9d = C_ 0 CHCyy —CHSy Qd.
1/;(1 4 Co 505y SeCy

Solvingfor Q3 in termsof b4 usingthefirst row of this
equatiorleadsto

3 co ; 2
Qg = ;d’d — ty Sy
)

where? is givenby Eq. 37.
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