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Abstract: We describe in this paper a new approach to the identification of the stable
regions of nonlinear systems, using cell mapping equipped with measures of fractal
dimension and those from rough set theory.  The proposed fractal-rough set approach
divides the state space into cells, finds out the chaotic region using cell to cell mapping
technique and classifies the cells according to the fractal dimension of each cell.
Assigning the fractal dimension to each cell in the state space, cells are then classified
as the members of lower approximation, upper approximation or boundary region of the
stable region with the help of rough set theory.  Rough sets with  fractal dimension as
their attributes are used to model the uncertainty on the stable region which is treated as
a set of cells in this paper.  This uncertainty is then smoothed by a reinforcement
learning algorithm.  Our approach  is applied to the stability of a dynamical system with
finger shaped boundary region.  Copyright 2002 IFAC
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1. INTRODUCTION

In analyzing nonlinear dynamical systems, one is
often interested in the local behaviour of the system
around its equilibrium states.  The local system
behaviour information around equilibrium point and
the determination of the global stable domain are
critical in order to conclude on the control strategies
and to assign the relevant parameters for the system
controller.

In some cases, frequently the stability boundary of a
domain of operation in the state space of a system is
fractal and the precise identification of the stable
region imbedded in that domain is nearly impossible.
Since there exists an integral dimension of the region
with a boundary with fractal dimension.  This
uncertainty in the identification renders the used
classical approaches very inefficient.

In order to overcome the problem of fractal
boundaries a probabilistic approach instead of a
precise prediction is suggested in (Hsu, 1980a, b;
1987) where domains of attractions are generated
using cell to cell mapping in examining the stability
of nonlinear systems.  As a result, such domains of
attraction based on cell to cell mapping technique is

far from being precise on the boundary of the region:
having possible unstable elements, the boundary
region of the domain of attraction introduces an
uncertainty into the stability region.

In this paper, a new approach combining the fractal
theory and the rough set theory in order to define the
stability regions of nonlinear systems in a more
precise manner is introduced.  Our approach consists
of three main steps, which are:
§ conducting global stability analyses by cell to

cell mapping,
§ determining the boundary region of the attraction

domain using rough set theory and fractal
dimension concept (Section 3),

§ smoothing uncertainty in the boundary region
via a learning algorithm (Section 4).

Our approach uses Hsu’s cell to cell mapping
technique for the global stability analyses.  The state
space is partitioned into grids of same size
determining cells.  The midpoint of the cells are used
as initial point of every integration step and all the
points in the cell are treated the same as the centre
point and are mapped into another cell according to
the result of the integration process of the cellular
transformation. After a number of integration
processes that takes the centre of every cell as its
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initial point, the stable region is determined as a set
of cells with a precision inversely proportional to the
cell size.  Thus, in order to have a true picture of
stability for a dynamical system, the cells should be
infinitely small which means every point in state
space will then be treated as a cell and the cell to cell
mapping technique becomes infeasible
computationaly as a point to point mapping process.

The novelty of our approach is two fold where first
the fractal dimension of each cell in the stable region
is analysed and used as an attribute of a rough set
which describes the uncertainty in the outcome of
cell to cell mapping technique due to cellular
irregularities.  The fractal dimension, assigned as an
attribute of the rough set in this study, is a common
measure of dimension and especially applied to the
chaotic attractors.  Fractal dimension has been the
focus of a multitude of leading works (Farmer, et al.,
1983; Hsu, et al., 1994).  Rough set theory is
proposed by Zdzislaw Pawlak in (Pawlak, 1982,
1995, 1997) for modelling uncertainty and
vagueness.  The second contribution of our approach
resides in the smoothing of the roughness in the
cellular stability domain, modelled by rough set
using reinforcement learning  (Kaelbling, et al.,
1996).

We will introduce our approach on an illustrative
example which will be presented in section 2.

2. ANALYSIS OF AN EXAMPLE

We consider the same system as in (Hsu, 1987) in
order to demonstrate our approach on the
probabilistic approach of Hsu, in the case of fractal
boundaries.  The system is chosen because of the
very simple nature of its nonlinearity and its well
understood global characteristics.  The dynamic
model of the system is represented as discrete state
equations as:
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where µ=0.1.  The system has a stable spiral point at
(0,0) and a saddle point at  (1,-0.9).

The 2D state space is further divided into cells of
dimension hxh . A two dimensional cell is designated
by its integer valued Z1 and Z2 components and a
point xi belongs the cell Zi if
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where the interval size for both coordinates is taken
as h.

In order to determine the attraction domain of the
system, system equations given in Eq.1. are iterated
43 times in (Hsu, 1987).  However, in order to be
safe, these equations are iterated 100 times for each
cell in the region of interest taken as –3<x1<3 and –

3<x2<3. At each integration step, starting from cell
Z(n), first, x(n) the centre point of Z(n), is put into
the integration process as the initial state and the
point x(n+1) results from the integration. Z(n+1), the
image cell of Z(n), is the cell in which x(n+1) lies.
The next integration is performed by taking the
centre point of Z(n+1) as the initial point and this
process is iterated for 100 integration steps.

The system is examined over a state space described
by 201x201 cells meaning that the x1 and the x2 states
are divided into 201 intervals.  The interval length h
is selected as 0.03 for both states that is to say in x1
and x2 directions respectively.  The region is thus
divided into 40401 regular cells.  The domain of
attraction found in 100 step is shown in Figure 1.  In
the figure white areas denote the unstable region
while the black ones stand for the domain of
attraction for the stable spiral point at (0,0).

Fig.1. A domain of attraction for division 201x201

As seen in the figure, the domain of attraction fails to
determine the finger shape regions, in spite of the
fact that the cell size is very low(0.003).  In the cell
mapping technique stable points are classified as
unstable, while the unstable points are classified as
stable in the boundary region.  This fact can be seen
by comparing Figure 1. with Figure 2. which is
constructed by using lower cell size(0.004).

Fig.2. A domain of attraction for division 1500x1500

The comparison demonstrates that smaller the cell
size; the more precise gets the domain of attraction.
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Consequently one natural way of having a totally
precise domain of attraction is to employ an infinite
number of cells with infinitely small dimensions in
the cell mapping. This approach is numerically
impossible since it needs infinite iterations, which
means infinite time.  Another solution is to handle
uncertainty by modelling it.

The following section deals basically with the
uncertainty modelling of the control space,
introducing the representation of its roughness by
Rough set theory extended in this work by the fractal
dimension concept.

3. FRACTAL/ROUGH SET APPROACH TO
UNCERTAINTY MODELLING IN STATE

SPACE

In this approach, rough set theory is employed to
classify the regions with different stability
characteristics.  Rough set proposed by Zdzislaw
Pawlak is a mathematical approach for modeling
vagueness in uncertainty.  The rough set theory is
based on the idea that any object of the universe is
associated with some kind of information.  Objects
characterized by the same information are
indiscernible and assigned to same uncertain set.

Sets containing indiscernible objects are called
elementary sets and the union of these kind of sets
are called the crisp sets while the other sets are called
rough sets.  As a result, each rough set has a
boundary region where set elements cannot be
classified either as set members or complementary
set members.  Boundary region elements are the ones
that cannot be classified by employing the available
knowledge.  In rough set approach, two precise
concepts called the lower and the upper
approximations of a rough set, are exploited to
replace the vagueness.  The lower approximation
consists the elements that are surely the elements of
the set and the upper set consists the elements that
are possibly elements of the set:

The lower approximation of a set X is described by
the domain (U) objects x which are known “with
certainty” to belong to the subset of interest
according to the attribute B.
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The upper approximation of a set X containing
objects x which “possibly” belong to the subset of
interest with respect to the attribute B.
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The boundary region of a rough set is a region of
uncertainty where the set elements of that region are
not known to be inside or outside the set “with
certainty” with respect to the attribute B.
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From this brief review, it becomes natural that state
space obtained by cell mapping can be modeled
using rough set theory.  We model the state space
obtained by cell mapping as a rough set of cells
where the lower approximation consists of stable
cells and the boundary region of the set consists
partially stable cells, while the other cells are
unstable and not members of that set.  Stable cells are
the ones where all points in them are stable, unstable
cells contain only unstable points and partially stable
cells are those that contain both stable and unstable
points in one cell rendering it possibly stable thus
vague in stability.  Partially stable cells form the
boundary region of the set.

To differentiate the cells according to such a
classification, we thought of using the satbility
vagueness information in a partially stable cell as an
irregularity measure.  The fractal dimension of each
cell is this measure-based information that we found
suitable for such a classification and that we assign as
an attribute of the rough set. We use the definition of
capacity in the computation the fractal dimension.
The capacity of a set is defined as
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where N(ε) is the minimum number of cubes of size ε
needed to cover the set.

The cell is divided up into rectangular subcells of
size ε and, the number of subcells N (ε) found to be
stable by cell to cell mapping technique as in Fig.3 is
counted for every cell.  Decreasing the subcell size ε,
the process is iterated.   Finishing this process, the
log N (ε) is plotted versus the log (1/ε) for every cell
and the slope of the plot is the fractal dimension in
the limit as ε goes to zero.

Fig.3. A cell divided up into 16 subcells (black =
stable)

At this point, another attribute is assigned to the
rough set defined.  This second attribute is the ratio
of stable subcells to all subcells within a cell where
stable subcells are the ones that are found to be stable
using the cell to cell mapping technique.  When the
subcell size goes to zero, this ratio becomes the
probability of being in a safe stable region when one
chooses a point in a cell.  We call this attribute the
stability number (Sn).  It follows naturally from our
definition that a stable cell has a Sn=1 and an
unstable cell has Sn=0.

These two attributes contain different information.
From the definitions, Sn gives the ratio of the stable
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region in a cell, while dc (capacity dimension)  shows
if this ratio changes for different cell sizes chosen to
find Sn, in other words if the cell (stable part of the
related cell) is fractal or not.

In our approach a rough set contains stable cells of
integer dimension and of Sn=1 and uncertain cells
identified as possibly stable, that have a fractal
dimension and an Sn number ≠0 and ≠1.  If a cell is
unstable it does not contain any stable subcells and
consequently its fractal dimension is undefined and
Sn=0.

In the example presented, the domain of attraction
which is the stability region contains 1249 cells,
which are either stable or possibly stable.  This
stability region is thus a rough set of stable cells in its
lower approximation and possibly stable cells in its
boundary. Cells from a portion of the rough set
boundary together with their attributes are given in
Table 1.

Table 1. Part of the rough set

Members Z1 Z2 dc Sn
Cell 1 85 75 2 1
Cell 2 85 74 2.4456 0.95
Cell 3 110 76 2.3532 0.17

In this table three cells are shown.  The first with an
integer dimension of 2 and Sn of 1 is fully stable and
the second and third are partially stable  (all the
points within the corresponding cell are not stable)
with fractal dimensions of 2.4456 and 2.3532
respectively.

Examining all 40401 cells in the state space of the
example system, it is found that there are 658 cells
with Sn=1 and dc=2 defining the fully stable cells;
39152 cells with Sn=0 and dc is not defined defining
the set of fully unstable cells; and 591 partially or
possibly stable cells with 0<Sn<1 and dc≠2 but finite
valued.  From this piece of information, the
following can be concluded:
§ All the cells with indefinite dimension are

unstable and not members of the rough set,
§ The cells with dimension different than two are

partially stable (some of the points in the cell are
stable while the others not) and are members of
the boundary region of the rough set,

§ The cells with integer dimension two are stable
and form the lower approximation of the rough
set.

The lower approximation of the rough set, consisting
of cells with integer dimension is given in Figure 4.
and the boundary region, consisting of cells with
fractal dimension is shown in Figure 5.

Fig. 4. Lower approximation of the rough set

Fig. 5. Boundary region of the rough set

In the following section, a method enlarging the
lower approximation by smoothing uncertainty in the
boundary region via a learning algorithm is
introduced.  The smoothing process uses a
reinforcement learning approach which is equivalent
to an ironing process of the irregular stability
boundary that the system guides itself by
reinforcement signals.  Those cells that can be ironed
are then included in the lower approximation,
consequently enlarging it.

4. SMOOTHING THE BOUNDARY REGION OF
A ROUGH SET

Every cell in the state space is divided into 4, 9, 25
and 100 subcells to find the fractal dimension and
100-subcell structure is used to compute the stability
number, Sn.  A learning method to decrease the
uncertainty in the boundary region and smooth the
stability roughness there, is employed on the 100-
subcell structure.  The applied method is the linear-
reward inaction type of reinforcement learning.

In this method, the subcells in the boundary region
are rewarded by their history of stability and their
probability of being stable, which is Sn. Reward is
decremented when an event of unstability occurs for
a point in subcell “i”.  Taking numerous random
points from each subcell and finding out if they are
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stable or not, Sn of each subcell is iterated by the
following formula:
§ When the point in the subcell “i” is stable,
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§ When the point in the subcell “i” is unstable,
i
n
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In our case, to find the Sn of a subcell, the above
formula is iterated for 100 times with different 100
random points in the subcell and this process is
repeated for every subcell of the boundary region.
To provide a slow convergence rate and to make the
algorithm fully convergent, α is chosen by trial and
error as  0.05 and it is seen that, in our case, 100
iterations are enough for the Sn to converge from the
simulations.

Applying the algorithm, the Sn of subcells, which can
be classified as stable with a little probability of
error, converge to 1, while the others converge to 0.
The subcells with Sn similar to the that of cells in the
lower approximation of the rough set (stable region),
(in other words the subcells with Sn approximately
equal to 1) are added to the lower approximation.
This expansion of the lower approximation by
possibly stable cells with high history of stability
increases the level of knowledge about the
characteristics of the stability region.  Using this
method, the stable region is enlarged based on a
possibility measure related to Sn representing a
stability history and the boundary region is
diminished.

The rough set in our case has 658 lower
approximation elements and 591 boundary elements
which means that 52.69% of the upper approximation
region is forming the lower approximation and
47.31% of the upper approximation region is forming
the boundary region.  Applying the smoothing via
reinforcement learning,  the lower approximation
becomes 60% of the upper approximation.  Including
subcells with Sn>0.9, 15.45% of the boundary region
is added to the stable region while the rest of the
region converge to the unstable area for our present
implementation.

In this study proposed method is applied to a 2D
system, the method is applicable to higher order
systems using the projections of high order systems
on to the 2D space.  Such a system is examined in
(Kaygisiz, et al., 2001).

5. CONCLUSION

In the novel approach introduced in this paper, we
increase the richness of the information in the
stability region of a nonlinear system using
fractal/rough set representation of that region.  The
fractal/rough set model developed is a new approach
brought to the area of the uncertainty modelling in

systems with fractal, finger shaped boundary region.
The approach introduces the fractal dimension of the
elements in the rough set as a measure of stability
roughness.  The uncertainty represented as roughness
is then minimized using reinforcement learning.
Minimization of uncertainty in the stability region is
done as smoothing  (“ironing”) of the irregularity of
system stability in the boundary region.

We apply in this paper our approach to a nonlinear
system with finger shaped boundary region, the
smoothing performance has been found to be 15.45
%.

Recently, our work begun to focus on the robustness
and performance measures of the fractal/rough set
approach.
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