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  Abstract: The study of the interactions between the energy sector, its effects on the 

environment and the corresponding impacts on a national economy must explicitly 
address multiple, conflicting and incommensurate aspects of evaluation. Multiple 
objective programming models enable the decision makers to rationalize the comparisons 
among distinct alternative solutions, providing them with a better perception of the 
conflicting aspects under evaluation and the ability to grasp the tradeoffs to be made. 
Reference point approaches provide a framework to aid decision makers to search for 
"satisfactory" efficient solutions. Moreover, it is possible to interpret the degree of 
satisfaction with the values of the objective functions by means of fuzzy membership 
functions.  Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
The energy sector is of outstanding importance to the 
analysis of an economy on a national level, because 
of direct and indirect consequences on several well-
being indicators ranging from economical aspects to 
social and environmental ones. In countries where 
the primary energy resources are scarce, it is even 
more important to provide decision makers (DMs) 
with well-founded information concerning the study 
of the interactions and tradeoffs between the energy 
sector, its effects on the environment and the 
corresponding impacts on the economic system. 
 
However, models aimed at this purpose must 
explicitly address multiple, conflicting and 
incommensurate aspects of evaluation. These are 
generally operationalized in mathematical models by 
means of objective functions expressing aspects of 
distinct nature such as economical, social, 
environmental, technical, etc. In single objective 
models these evaluation aspects are generally 
encompassed by an aggregate economic indicator. 
Therefore, it is not possible to identify the tradeoffs 
between them which are a crucial information to 
evaluate the merit of alternative solutions. 
 
Multiobjective mathematical models become more 
adequate to provide decision support in actual 

decision situations by enabling the DMs to 
rationalize the comparisons among distinct 
alternative courses of action, providing them with a 
better perception of the conflicting aspects under 
evaluation and the ability to grasp the nature of 
tradeoffs to be made. Since the objective functions 
are generally in conflict, there is not a prominent 
solution that optimizes all the objective functions 
simultaneously. The concept of optimal solution to a 
single objective problem gives thus place, in a 
multiple objective context, to the concept of efficient 
solutions: feasible solutions for which no 
improvement in any objective function is possible 
without sacrificing on at least one of the other 
objective functions. 
 
Several approaches exist to compute efficient 
solutions. These processes are generally called 
scalarizing processes because they involve the 
resolution of a scalar optimization problem in a way 
that the optimal solution to this problem is an 
efficient solution to the multiobjective problem. 
Reference point-based approaches provide an 
appealing framework, both from theoretical and 
cognitive perspectives, to aid the decision maker to 
strive for "satisfactory" efficient solutions. 
Furthermore, it enables to interpret the degree of 
satisfaction with the values of the objective functions 
by means of fuzzy membership functions. 
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The multiobjective model based on input-output 
analysis to study economy-energy-environment 
interactions is briefly described in section 2. In 
section 3 the main ideas regarding the reference 
point approach are presented. The use of aspiration 
and reservation levels in the framework of fuzzy 
analysis is discussed in section 4. Some illustrative 
results obtained by the application of this 
methodological approach to the multiobjective linear 
programming (MOLP) model are presented in 
section 5. 
 
 

2. A MULTIOBJECTIVE MODEL 
 
A MOLP model is developed by using input-output 
analysis to express the flows of good and services 
within an economy. This model has been supplied 
with data from the Portuguese case. 
 
The input-output approach considers 21 economic 
sectors and 23 artificial sectors (used for distributing 
the output of the oil refining sector and the by-
products through the consuming sectors). It consists 
of: a (44x44) matrix which represents the inter- and 
intra-sector flows, 6 column vectors with the 
components of final demand (private consumption, 
collective consumption, gross fixed capital 
formation, positive and negative stock changes and 
exports), 1 column vector for the competitive 
imports (imports which have endogenous equivalent) 
and 3 row vectors for the primary inputs (wages, net 
indirect taxes, operating surplus). The sectors are 
classified as follows: energy sectors (coal, oil, 
electricity, city gas and self-production of 
electricity), hydrocarbons (crude oil, shale oil, 
propylene, LPG, gasoline, petroleum, jets, diesel oil, 
fuel oil, naphtha, lubricants, bitumen, paraffin, 
solvents and petroleum coke), by-products used in 
self-production of electricity (incondensable gases, 
hydrogen, black liquors, other by-products, pitch, 
coke oven gas, coke gas and biogas) and industrial 
sectors (encompassing industry and services). The 
total output of each sector is represented by a 
decision variable. The technical coefficients matrix is 
obtained from the transactions table of a given year 
taken as the basis of the study. This matrix shows the 
relationships among the different sectors of the 
economy that are used to define coherence 
constraints of the MOLP model (namely imposing 
that the use of a specific good or service, for 
intermediate consumption and final demand, cannot 
exceed the resources available, resulting from 
national production and competitive imports). 
 
The input-output approach (Leontieff, 1951) has 
been used to develop a table which structures the 
national economy in activity sectors and displays the 
economic flows between them, thus providing a 
systemic overview of all activities in the country and 
enabling to take into account their interactions. An 
input-output table disaggregates an economic system 
into a number of sectors, each of which producing a 
particular type of output, with the output structure 
assumed to be fixed, and no substitution between the 

outputs of the different sectors. The aim of this study 
is to model the interactions between the economy 
and the energy sector on a national level. The 
amount of primary energy to produce a good or 
service (either as an input for other sectors or for 
final demand) is computed. The use of fossil fuels 
can be then associated with the activity level of each 
sector to compute the resulting amount of emissions 
of atmospheric pollutants. The top-down 
methodology of IPCC (IPCC, 1996), which is based 
on the principles of combustion and composition of 
fuels, has been used to model CO2 emissions. 
 
The objective functions are: - the maximization of 
employment (as a surrogate for social well-being); - 
the minimization of energy imports (taking into 
account the energy dependence of the country); - the 
maximization of Gross Domestic Product (GDP) (as 
a measure of the performance of the national 
economy); - the minimization of carbon dioxide 
(CO2) emissions (due to the impact of energy 
resources on the environment, namely regarding air 
pollution). Several sets of constraints are considered 
related to production capacity, bounds on imports 
and exports, public deficit (according to European 
Union requirements), balance of payments (imposing 
a given level of external equilibrium), gross added 
value, self-production of electricity (upper and lower 
bounds on the use of alternative forms of energy, 
aimed at encouraging the recycle of wastes, energy 
economies and the minimization of waste disposal), 
storage capacity and security stocks for 
hydrocarbons. 
 
Further details on the mathematical model can be 
seen in (Oliveira and Antunes, 2000) and (Antunes et 
al., 2002). 
 
 

3. REFERENCE POINT APPROACHES 
 
Reference point approaches can be considered as 
generalized goal programming. Goal programming is 
a well established optimization model based on the 
concept of setting a goal in the objective space and 
compute the feasible solution closest (in a certain 
sense) to it. The goal can be attainable or not. A 
distance minimization is underlying. However, as 
Wierzbicki (1983; 2000) points out this is 
mathematically inconsistent with the concept of 
vector-optimality or efficiency, for a function to 
produce a vector-optimal outcome a requirement is 
its monotonicity. That is, the distance function is not 
monotone when its arguments cross zero. 
 
The reference point can be formed by asking the DM 
to specify his/her aspiration levels regarding each 
objective function, that is the (preferably ambitious) 
levels he/she would like to attain in each aspect of 
evaluation. Setting these aspiration levels in the 
objective space and proceeding to come as close as 
possible to them is quite appealing from the 
perspective of the cognitive effort required from the 
DM. However, whenever the aspiration levels are all 
simultaneously attainable the DM can be confronted 



     

with non-efficient decisions (because the reference 
point is itself non-efficient). In this case an improved 
solution compared to it must be obtained. In the 
framework of reference point methodologies the 
aspiration levels must be improved, not just reached, 
whenever they are attainable (that is, better in all 
evaluation aspects can be achieved). Using the 
terminology of Wierzbicki (1983; 2000) this leads to 
a “quasi-satisficing” decision which is obtained by 
optimizing a so-called achievement function, 
departing from Simon's “satisficing” decision. Those 
order-consistent achievement functions are similar 
but not equivalent to distance functions. 
 
Reservation levels can also be specified as the worst 
values the decision maker is willing to accept (in a 
final solution) for each objective function. Both 
aspiration levels and reservation levels are used as 
"soft constraints", in the sense that they are not 
definitively incorporated in the problem formulation 
and they are not rigid since they can be revised in 
subsequent interactions with the decision maker as 
more knowledge about the problem as well as his/her 
own preferences is gathered. 
 
 

4. FUZZY ANALYSIS IN MOLP 
 
The MOLP problem with p objective functions and 
m constraints is generally stated as 
 
  “max” z = C x (1) 
  s. t. 
  x ∈ X = {x ∈ Rn: Ax ≤ b, x ≥ 0} 
 
where A is a mxn matrix, b is the m right-hand side 
(RHS) column vector and C is a pxn matrix of 
objective functions coefficients. “max” denotes the 
operation of computing efficient solutions. 
 
In a fuzzy environment a great diversity of possible 
modifications to (1) has been proposed.  
 
The mathematical relations involved may be fuzzy 
(fuzzy objectives and/or constraints). The DM may 
not be interested in optimizing some of the objective 
functions; rather he/she might want to “improve” as 
much as possible their values in order to reach some 
“aspiration levels” which may not be crisply defined. 
The constraints may also be fuzzy, that is the ‘ ≤ ’ 
sign might not be met in the strictly mathematical 
sense but the DM may accept small violations on it. 
 
The coefficients of the vector b or the matrices C or 
A can also have a fuzzy character either because they 
are fuzzy in nature or their perception is fuzzy. 
 
Moreover, the solution of a fuzzy linear 
programming problem may be crisp or fuzzy. In the 
latter case a solution set (of all fuzzy efficient 
solutions) is presented to the DM and he/she must 
select his/her preferred one according to his/her 
preferences (which can be explicitly or implicitly 
modelled by an analytical construct such as a value 
or utility function). 

Different ways to deal with these types of fuzziness 
on LP models are widely reported in the literature. 
The Zimmermann’s symmetrical approach 
(Zimmermann, 1983; 1992) is generally used when 
the objectives and/or some constraints are fuzzy. 
 
 
4.1 The Zimmermann’s symmetrical approach. 
 
We shall assume that, regarding model (1), the DM 
is able to establish a p-vector of aspiration levels, Z0, 
for the objective functions and that ‘ ≤ ’ means 
something as “essentially smaller than or equal” (that 
is, fuzzy relations are at stake). 
 
The obtained model is fully symmetrical with respect 
to objective functions and constraints. This can be 
made clearer by using the following substitutions 
A’=[-C A]T and b’=[-Z0 b]T. Model (1) becomes: 
 
  Find x (2) 
  s. t. 

 x ∈ X’ = {x ∈ Rn: A’x
 ~
≤ b’, x ≥ 0} 

Each of the (m+p) rows of (2) shall now be 
represented by fuzzy sets, each one defined by the 
membership function µi(x). Considering the Bellman 
and Zadeh (1970) decision model the membership 
function of the fuzzy set decision to (2) is 
 
 µ D~ (x) = min {µi(x)} (3) 
 
If the DM is only interested in a crisp optimal 
solution then 
 
  max [min {µi(x)}]=max{µ D~ (x)} (4) 
 
µi(x) should be ‘0’ if the constraints (including 
objectives) are strongly violated, ‘1’ if they are very 
well satisfied (i. e., satisfied in the crisp sense) and 
µi(x) should increase monotonously from ‘0’ to ‘1’. 
 
Problem (4) is transformed into  
 
  max λ (5)  
  s. t. 
 λ ≤ µi(x) 
 x ≥ 0, λ ∈ [0, 1], i=1, 2, … m+p. 
 
λ=max[min {µi(x)}] and can be interpreted as the 
degree to which x fulfils (satisfies) the fuzzy 
inequality (A’x)i ≤ b’i (associated with the ith row). 
 
The resolution of this problem leads to an efficient 
solution to the original MOLP (1), and even in cases 
where multiple optimal solutions to (5) exist at least 
one is strictly efficient. 
 
The complexity of problem (5) is associated with the 
considered membership function µi(x). The simplest 
type of membership function is linearly increasing 
over the tolerance interval pi (fig. 1), and the 
following linear programming is obtained 



     

  max λ (6) 
  s. t. 
 λ pi - (A’x)i ≤  b’i - pi 
 x ≥ 0, λ ∈ [0, 1], i=1, 2, … m+p. 
 

If the ith constraint is of type 
 ~
≥  then λ ≤ µi(x) is 

converted in λ pi + (A’x)i ≤ b’i + pi. If it is of type 
 ~
=  

then both relations must be considered. If for some 
objectives the DM can specify precisely the 
aspiration levels those could be grouped with the 
constraints that remain crisp in X. 
 

 
 

 
 

Fig. 1. Linear membership functions. 
 
 
4.2 Reference point versus symmetrical approaches. 
 
Werners (1987) drew attention to the fact that 
problem (5) mostly resembles goal programming 
with a special norm. In (5), the nearness of the 
objective values to the aspiration levels, defined by 
the DM, is maximized. This is done by considering a 
new decision variable to be maximized with an upper 
bound (λ ≤ 1). 
 
For the sake of illustration, let us consider the 
example in fig. 2 (Zimmermann, 1983) whose 
solution PF is characterized in table 1. If the DM 
considers the values that maximize each objective 
(point PI) as aspiration levels and the differences 
from these to the worst objective values over the 
efficient region as tolerance values (that is, the worst 
objective values over the efficient region be seen as 
reservation levels), then the solution to (6) (point PF) 
is the one that minimizes the distance between the 
objective values and PI. Moreover, if it is considered 
that the distance from P’ to PI is 1, then the distance 
from P’ to PF is λ =0.742 and from PF to PI is (1-λ) 
=(1-0.742)=0.258. 
 
For problems with two membership functions the 
slacks of the corresponding constraints in (5) are 
always zero, that is, they are strictly satisfied. Point 
PF is associated with the same value for both µi(x). 
If the number of membership functions is greater, 
then some of the slacks associated with the 
membership functions’ constraints in (5) may be 
non-zero for a given solution, meaning that the 
corresponding satisfaction degree value is higher 
than the overall satisfaction degree. 

 Table 1 Illustrative example solutions 
 

  PF (Fig. 2) PG (Fig. 3)   
 f1(x)Asp. 14.000  7.000 
 f2(x)Asp. 21.000 13.000 
 f1(x)Res. -3.000 -3.000 
 f2(x)Res. 7.000 7.000 

 
 λ 0.742 1.000 
 f1(x) 9.613  11.375 
 f2(x) 17.387 15.625 
 slack µ1(x) 0.000  0.000 
 slack µ2(x) 0.000 0.000  
 

 
 

Fig. 2. Illustrative example (non-attainable aspiration 
levels). 

 
Fig. 3 displays the previous example but considering 
attainable aspiration levels. 
 

 
 

Fig. 3. Illustrative example (attainable aspiration 
levels). 

 
Using Zimmermann’s approach the obtained solution 
is one of the alternative optima to problem (6) with 
the overall satisfaction degree λ=1.0 but that is 
situated on the efficient region to the original MOLP 
problem (1). 



     

Based on the membership functions that the DM has 
specified, an increasing direction for λ (removing its 
upper bound) can be defined, using a similar idea as 
in the reference point approach (see figs. 2 and 3). If 
the obtained solution is associated with a λ>1 (as in 
the case of fig. 3), then all the fuzzy constraints are 
completely satisfied and λ=1. In this case, the 
decision aid system shall propose an improved 
solution to the DM that is efficient to problem (1), 
such as point PG. 
 
This procedure considering the modified fuzzy 
membership functions (associated to each objective 
function/constraint) can be interpreted similarly to 
the one presented by Wierzbicki (2000), in the 
framework of reference point methodologies 
considering piece-wise linear partial achievement 
functions σi (monotone and concave), where the 
slope is always the same (fig. 4). 
 

 
 

Fig. 4. Similarities between the modified fuzzy 
membership function and the partial achievement 
function (for a maximizing objective function). 

 
Considering the decision process as a learning 
process about the problem as well as about the DM’s 
preference structure, an interactive analysis 
supported by the approach described above can be 
carried out. The preferential model is specified by 
means of aspiration and reservation levels, which 
initially can be the optimal values for each objective 
function and the worst values over the efficient 
region, respectively. Thereafter, the approach is 
flexible in order to interactively incorporate the 
DM’s preferences changes. The DM might modify 
his/her preferences by specifying which objective 
value(s) should be improved/worsened in order to 
analyze different courses of action. Moreover, it is 
not required that the DM’s preferences should be 
consistent through out the study. 
 
 

5. AN ECONOMY- ENERGY-ENVIRONMENT 
MODEL - SOME ILLUSTRATIVE RESULTS 

 
In this section some illustrative results are presented 
by using the methodological approach described 
above to provide decision support in the study of 
economy- energy-environment interactions. The data 
supplied to the model have been collected from 
several sources such as INE (Portuguese National 
Statistics Institute), DGE (General Directorate for 
Energy) and IPCC. 
 
Let us suppose that the efficient solutions that 
individually optimize each objective function are 

computed. This enables to have a first overview of 
the characteristics of well dispersed solutions and the 
range of the objective function values over the 
efficient solution set (table 2). 
 
Let us consider that, without having further 
information, the DM accepts the optimal values for 
each objective function as the initial aspiration 
levels. The worst values in each column of table 2 
are taken as reservation levels, which are not 
necessarily the worst values over the efficient region. 
Therefore, the initial tolerance values are pi=besti-
worsti. 
 
The Zimmermann’s solution presented in the second 
column of table 3 is computed. Owing to the fact that 
the slacks associated with all µi(x) are zero, the 
corresponding membership function values are the 
overall satisfaction degree, 0.768. 
 
From herein the DM can change the 
aspiration/reservation levels in order to improve 
and/or worsen some of the objective function values. 
 
For instance, if the DM is willing to relax the value 
of Employment (=5 629 579) then he/she could decrease 
the corresponding reservation level or aspiration level (and 
improve the overall satisfaction degree). The second 
computed solution (third column of table 3) has been 
obtained considering that the aspiration level associated with 
Employment is decreased by 1% of (the initial) pi. All the 
membership function values equal the overall 
satisfaction degree of 0.770, meaning that the 
aspiration level associated with Employment can be 
decreased and different efficient solutions with lower 
Employment values can be determined. The solution in 
the fourth column has been computed considering the 
initial aspiration level associated with Employment 
decreased by 5% of (the initial) pi. As the slack 
associated with µEmployment for this solution is not 
zero the corresponding membership function has 
higher value than the overall satisfaction degree of 
0.771. If a lower aspiration level for Employment is 
considered no further changes of the obtained 
solution occur. 
 
If the DM also accepts a higher value for CO2 
emissions then he/she could increase the corresponding 
reservation level or the corresponding aspiration level. This 
leads to the solution in the fifth column of table 3, where the 
CO2 emissions aspiration level has been increased by 10% 
of (the initial) pi. The slacks associated with 
µEmployment and slack µCO2 emissions are not zero, 
meaning that the corresponding membership 
functions have higher values than the overall 
satisfaction degree. 
 
If the DM wants to improve GDP he/she can, for 
example, increase the corresponding aspiration level 
as in the fifth computed solution where it is 
improved by 20% of (the initial) pi. Note that, in this 
solution (column six of table 3), the Employment value 
has also improved. 



     

Table 2 Efficient solutions that individually optimize each objective function. 
 

  Employment (#) Energy imports (toes) GDP (PTE) CO2 emissions (Gg)  
 Max Employment 5 735 829 22 150 792 19 996 334 63 260 
 Min Energy imports 5 285 951  19 315 123 18 476 526 58 433 
 Max GDP 5 727 488  22 241 143 20 023 324 63 220 
 Min CO2 emissions 5 277 375 21 039 177 18 470 058 58 402  
 Initial pi = besti-worsti 458 454 2 926 020 1 553 266 4 858 

 

 
Table 3 Interactive analysis of the Economy- Energy-Environment planning model. 

 
  Symmetrical  Loss in Loss in  Loss in Improvement in  
  Solution Employment (1) Employment (2) CO2 emissions GDP  
 EmploymentAsp. 5 735 829 5 731 244 5 712 906 5 712 906 5 712 906 
 Energy importsAsp. 19 315 123 19 315 123 19 315 123 19 315 123 19 315 123 
 GDPAsp. 20 023 324 20 023 324 20 023 324 20 023 324 20 178 651 
 CO2 emissionsAsp. 58 402 58 402 58 402 59 374 59 374 
 EmploymentRes. 5 277 375 5 277 375 5 277 375 5 277 375 5 277 375 
 Energy importsRes. 22 150 792 22 150 792 22 150 792 22 150 792 22 150 792 
 GDPRes. 18 470 058 18 470 058 18 470 058 18 470 058 18 470 058 
 CO2 emissionsRes. 63 260 63 260 63 260 63 260 63 260  
 λ 0.768 0.770 0.771 0.851 0.790 
 Employment 5 629 579 5 627 061 5 626 674 5 662 485 5 670 759 
 Energy imports 19 993 245 19 986 775 19 985 781 19 752 654 19 928 485 
 GDP 19 663 346 19 666 780 19 667 308 19 791 063 19 820 490 
 CO2 emissions 59 528 59 518 59 516 59 723 60 189 
 slack µEmployment 0 0 135 938 147 044 491 509 
 slack µEnergy imports 0 0 0 0 0 
 slack µGDP 0 0 0 0 0 
 slack µCO2 emissions 0 0 0 232 447 0 

 
 
 
The study could proceed in the same manner until 
the DM considers to have gathered sufficient 
information to make a final decision. Although in 
this example only the aspiration levels of µi(x) have 
been changed, a similar study can be performed 
considering different reservation levels. 
 
 

6. CONCLUSION 
 
It has been shown how reference point approaches 
provide a decision aid framework to support the 
computation of efficient solutions adapted to the 
evolutionary DM’s preferences. The degree of 
satisfaction with the objective function values can be 
interpreted as fuzzy membership functions. 
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