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Abstract: In this paper a method for designing robust offset-free MPC controllers for
(possibly) nonzero targets is presented. The proposed controller is guaranteed to track
the controlled variable to its target for any plant that lies in a polytopic region. First,
an off-line design of a robust unconstrained offset-free controller is accomplished, and
a corresponding invariant region is computed in which this controller is well defined
and does not violate the constraints. Next, the online implementation requires the
use of this unconstrained controller if the system state is in the invariant region or,
if not, the solution of a min-max finite horizon optimization problem. An illustrative
example is presented. Copyright © 2002 IFAC
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1. INTRODUCTION

Several formulations of robust model predictive
control (RMPC) have been proposed during the
last decade, starting from algorithms for sys-
tems described by finite impulse response (FIR)
(Genceli and Nikolaou, 1993; Zheng and Morari,
1993; De Nicolao et al., 1996b; Ralhan and Badg-
well, 2000). Kassmann et al. (2000) propose a ro-
bust target calculation method to enhance the sta-
bility of QDMC. In the more general framework
of state-space models, De Nicolao et al. (1996a)
propose a robust controller with nominal tracking
properties. Kothare et al. (1996) use a polytopic
description of uncertain systems and propose an
LMI based control strategy. Kouvarithakis et al.
(2000) generate, off line, an ellipsoid invariant
region and then compute on-line the free control
moves to reach this invariant set (“dual-mode”
paradigm). Also, Lee and Kouvaritakis (2000) re-
duce the computational complexity through the
use of a linear programming approach.

One disadvantage of these current state-space for-
mulations of RMPC is that they are able to con-

trol uncertain systems without steady-state offset
only if the state target is the origin. Consider, for
instance, a pure gain scalar system described by
xk+1 = buk in which b is an unknown constant
scalar ∈ [1, 2]. If the state target is the origin, the
corresponding input target is the origin, as well,
regardless of the actual value of b in the uncertain
region. Thus, if one uses a stabilizing gain, the
state is driven to zero regardless of b. Conversely, if
the state target is 1, the input target varies from 1
to 0.5, and the application of a stabilizing control
law would lead to steady-state offset. Kothare et
al. (1996, Section 4.2) propose to address this
problem by expressing the state and the input as
deviation from their corresponding target. How-
ever, these targets can be computed only if the
system is known, thus making unnecessary the use
of a robust control algorithm.

In this paper, a method for controlling unknown
systems with zero steady-state offset is proposed.
The method is based on a dual-mode paradigm
in which the inner unconstrained controller is
designed in a way that it leads to zero steady-
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state offset. An appropriate invariant region is
defined, in which the controller does not violate
the process constraints. The basic idea and many
theoretical details arise from the feedback min-
max approach proposed by Scokaert and Mayne
(1998), in which the problem of controlling per-
fectly known systems in the presence of unknown
bounded disturbances was addressed.

2. CONTROL ALGORITHM

We consider linear systems described by

xk+1 = A(k)xk +B(k)uk,
x ∈ Rn, u ∈ Rm, [A(k), B(k)] ∈ Ω,
Ω = Co {[A1, B1] , . . . , [AM , BM ]} ,

(1)

in which Co {·} denotes the convex hull (see e.g.
(Kothare et al., 1996)). This description includes
linear time-varying systems (LTV) and uncertain
linear time-invariant systems (ULTI). It is as-
sumed that, at each sampling time, the state of
the system xk is measured. The controlled vari-
able is defined as a known linear time-invariant
combination of the state:

z = Hx, z ∈ Rp, (2)

in which p ≤ min{n,m}.

Assumption 1. For any [A,B] ∈ Ω, we assume
that (A,B) is stabilizable and (A,H) is de-
tectable.

Let z̄ ∈ Rp be the desired target for the controlled
variable. The objectives of the controller are:

(1) to stabilize any plant in Ω,
(2) to track without offset the controlled variable

when the system is ULTI,

while respecting the process constraints. For ease,
only input constraints are considered:

Duk ≤ e, e ∈ Rq, ei > 0 . (3)

We propose a robust dual-mode control law com-
posed by an “outer” and an “inner” controller.
The inner controller is associated with a robust
invariant set and it is used whenever the system
state enters this set. This controller is designed
in a way that it drives the controlled variable
to its target if the system is ULTI. The outer
controller is found by solving, on line, a min-max
optimization problem.

2.1 Unconstrained controller and invariant set

Let [Am, Bm] ∈ Ω denote the state-space matri-
ces of a particular model referred to as “nominal
model”. The “inner” controller is defined as an

unconstrained MPC regulator based on the nomi-
nal model, designed for offset-free control. In MPC
offset-free control is obtained by adding integrat-
ing disturbances to the process model. Rawlings
et al. (1994) show that, for square non-integrating
systems, an output disturbance guarantees offset-
free performance. Recently, Pannocchia and Rawl-
ings (2001a) presented results for generic linear
systems. In particular, it is shown that a number
of additional disturbances equal to the number of
measurements is sufficient to guarantee absence
of offset, provided that the closed-loop system is
stable. Here, we use the same procedure and we
choose the nominal model and the disturbance
model in a way that the closed-loop system is
stable for any plant in Ω, thus obtaining offset-
free performance.

Let x̂ ∈ Rn and d̂ ∈ Rn be the state and the
disturbance of the following augmented system:

x̂k+1 = Amx̂k +Bmuk +Bdd̂k

d̂k+1 = d̂k

xk = x̂k + Cdd̂k,

(4)

in which Bd and Cd are matrices of appropriate
dimension that satisfy

rank
[
I −Am −Bd

I Cd

]
= 2n . (5)

The state and the disturbance are computed, at
each sampling time, from the plant state x by
using a deterministic steady-state Kalman filter
designed for (4), that is

x̂k|k = x̂k|k−1 + Lx(xk − x̂k|k−1 − Cdd̂k|k−1)

d̂k|k = d̂k|k−1 + Ld(xk − x̂k|k−1 − Cdd̂k|k−1)
(6)

in which the common double-index filtering no-
tation is used. Condition (5) implies that the
augmented system (4) is detectable (Pannocchia
and Rawlings, 2001a) and, therefore, such filter
matrices Lx and Ld exist. The Kalman filter in
(6) can also be written in the predictor form

x̂k+1|k = Amx̂k|k−1 +Bmuk +Bdd̂k|k−1

+ L1(xk − x̂k|k−1 − Cdd̂k|k−1)

d̂k+1|k = d̂k|k−1

+ L2(xk − x̂k|k−1 − Cdd̂k|k−1),

(7)

in which straightforward relations between (Lx, Ld)
and (L1, L2) can be obtained.

Next, the controller is chosen as the solution of the
following infinite horizon optimization problem:

min
uk,uk+1,...

Φ =
∞∑
j=k

(zj − z̄)TQ(zj − z̄) + ∆uTj R∆uj

s.t. the model (4),∆uj = uj − uj−1,
(8)

in which Q and R are symmetric positive defi-
nite matrices. This problem can be written as a
standard LQ problem (see e.g. (Rao and Rawl-



ings, 1999)) and its solution is the well-known
feedback control law:

uk = usk +Kx(x̂k|k − xsk) +Ku(uk−1 − usk) (9)

in which Kx and Ku are computed from the cor-
responding Riccati equation, while xsk and usk are
obtained, at each sampling time, as the solution
of the following target calculation problem (Muske
and Rawlings, 1993):

min
xs
k
,us
k

(usk − ū)TRs(usk − ū)

s. t.

xsk = Amx
s
k +Bmu

s
k +Bdd̂k|k

z̄ = H(xsk + Cdd̂k|k),

(10)

in which ū is the desired input target and Rs is a
symmetric positive definite matrix.

It is interesting to notice that the term uk−1 in
the feedback law (9) is related to the presence of
∆u terms in the objective function (8). Also, the
target calculation (10) has a closed-form solution
that is affine in d̂k|k. In fact, (10) is an equality-
constrained convex quadratic program whose so-
lution can be computed from the corresponding
KKT system.

When the feedback control law (9) is applied
to the plant (1), the closed-loop system has the
following linear form (after some tedious algebraic
calculations):

wk+1 = Λ(k)wk + Γ(k)v,

wk =


xk

x̂k|k−1

d̂k|k−1

uk−1

 , v =
[
z̄
ū

]
,

[Λ(k),Γ(k)] ∈ Ω∗ = Co {[Λ1,Γ1] , . . . , [ΛM ,ΓM ]} ,

(11)

in which the matrices [Λi,Γi] are not reported for
the sake of space. We also have that the input is
equal to

uk = Θwk + Ψv, (12)

in which Θ and Ψ are appropriate matrices (not
reported). Notice that, once the matrices of the
nominal model (4) are fixed and the Kalman filter
(6) is designed, the matrices [Λi,Γi], Θ and Ψ
are well defined and known. Also, notice that
the closed-loop system is stable if and only if
any matrix Λ in the corresponding subspace of
Ω∗ is stable. Thus, the nominal model and the
disturbance model need to be found a way that
closed-loop stability is guaranteed for any plant
in the uncertainty region.

This goal can be achieved by solving a min-max
problem whose objective is the same as in (8) but
the true values of zj and ∆uj are used instead of
the predicted ones. In this step, we consider ULTI
systems for which a simple way to compute the
true objective function based on the solution of a
Lyapunov equation is available (Pannocchia and

Rawlings, 2001b). Thus, the optimization problem
is

min
{Am,Bm,Bd,Cd}

max
{A,B}

Φ . (13)

The meaning of this optimization problem is to
find a nominal model and a disturbance model
that guarantee the minimum closed-loop objective
function for the worst case of plant in Ω. Clearly, if
the global maximum is found and the correspond-
ing Φ is finite, the closed-loop system is stable for
any possible plant in Ω. In practice this optimiza-
tion problem is solved by using SQP methods and,
since in general the problem is not convex, these
methods cannot guarantee that a global maximum
is found. However, once a “feasible” solution is
returned by the optimizer, i.e. a nominal model
and a disturbance model for which Φ is finite at
the local maximum, a global closed-loop stability
argument is obtained by constructing a robustly
invariant set, as discussed below.

We use the theory of positively invariant sets (see
e.g. (Blanchini, 1999) for a recent and extensive
review), in order to find a region in which the
unconstrained controller (9) does not violate the
process constraints. In particular, the method
proposed by Blanchini (1994) is applied to the
unconstrained closed-loop system (11)-(12). Let

S = {w|D(Θw + Ψv) ≤ e} = {w|Fw ≤ g} . (14)

Set X0 = S, and consider the following sequence
of sets:

Xk =
{
w|F (k)w ≤ g(k)

}
Nk =

{
w|F (k)(Λjw + Γjv) ≤ g(k), j = 1, . . . ,M

}
Xk+1 = Nk ∩ S =

{
w|F (k+1)w ≤ g(k+1)

}
. (15)

Blanchini (1994) show that the maximal invariant
set contained in the feasible region S is given by

W =
∞⋂
k=0

Xk . (16)

For discussions about the practical computation
of such invariant set, we refer to the cited paper.
Here we assume that an invariant region of the
following form exists and has been computed:

W = {w|Gw ≤ h} . (17)

A number of comments are appropriate.

(1) The off-line design technique requires the
solution of a min-max problem in order to
select a nominal model and a disturbance
model. After this choice has been made, an
unconstrained feedback control policy is well
defined.

(2) The existence of an invariant region W, im-
plies robust stability of the unconstrained
closed-loop system for any LTV system in Ω.
That is, any characteristic closed-loop matrix



Λ in the corresponding subspace of Ω∗ is
stable.

(3) Assume that the system is ULTI. If the initial
closed-loop state is in the invariant set, it
will reach a steady value. Using the results
in (Pannocchia and Rawlings, 2001a) we have
that if input and output reach a steady state,
there is zero offset in the controlled variable,
that is

lim
k→∞

zk = Hxk = z̄ . (18)

2.2 Min-max MPC controller

The “outer” controller is based on the solution of
a min-max problem similar to the one proposed
by Scokaert and Mayne (1998). Two interesting
features of the algorithm by Scokaert and Mayne
need to be noticed.

(1) Linearity of the system and convexity of the
disturbance region are exploited in order to
show that only “extreme realizations” of the
disturbance need to be considered in the
maximization.

(2) For each disturbance realization, a different
control profile is computed (with the addition
of a “causality constraint”) and this renders
the control law less likely to fail due to
infeasible constraints.

Both these features can be included in the pro-
posed algorithm. Indeed, we show that only ex-
treme plant realizations need to be considered
when maximizing. However, for simplicity of pre-
sentation we optimize over a single input profile.
All the results that we present can be directly
extended to the more general case of different
control profiles for each plant realization.

At time k, let {A`(k + j), B`(k + j)}N−1
j=0 denote

the possible realizations of the plant (i.e. any
sequence of plant matrices in Ω). Let π(k) =
{uk|k, . . . , uk+N−1|k} be an input sequence. Let
wk be the current closed-loop augmented state
as defined in (11). Combining (1) and (7) we
can write the evolution of wk over the l-th plant
realization as

w`k|k = wk,

w`k+j+1|k = Λ̃`(k + j)w`k+j|k + Γ̃`(k + j)uk+j|k,
(19)

in which

Λ̃`(k + j) =


A`(k + j) 0 0 0

L1 Am − L1 Bd − L1Cd 0
Ld −Ld I − LdCd 0
0 0 0 0

 ,

Γ̃`(k + j) =


B`(k + j)

Bm
0
I

 .

Further, let Lv be the set of indexes `, such that
{A`(k+ j), B`(k+ j)}N−1

j=0 take values only on the
vertices of Ω. The following min-max problem is
considered:

min
π(k)

max
`∈Lv

N−1∑
j=0

L(w`k+j|k, uk+j|k)

s.t. (19), (3),

w`k+N |k ∈ W,

(20)

in which the cost function is

L(w, u) =


0 if w ∈ W,
(z − z̄)TQ(z − z̄)
+∆uTR∆u if w 6∈ W.

(21)

Notice that, since z = Hx = H[I, 0, 0, 0]w, ∆u =
u − [0, 0, 0, I]w, and (Q,R) are positive definite
matrices, the cost function is convex in (w, u).
Also notice that, by construction, the invariant set
W includes the stationary points for all possible
plants, i.e. (xs, us) such that xs = Axs + Bus,
z̄ = Hxs for any (A,B) ∈ Ω.

Given this foundations, the proposed control al-
gorithm is the following.

Algorithm 1. At time k, given the closed-loop
state wk, if wk ∈ W set uk = Θwk + Ψv.
Otherwise, solve (20) and set uk to the first term
of the computed optimal sequence π̄(k).

2.3 Properties

We have the following results.

Theorem 1. Assume that a robustly invariant set
W as in (17) exists and that the optimization
problem (20) is feasible at time 0. Then, the
feedback control law defined by Algorithm 1 drives
the closed-loop state wk to the invariant set W.

Proof. At time k, assume that wk 6∈ W (otherwise
the proof is complete). The optimal input ūk,
injected in the plant, drives the closed-loop state
from wk to wk+1, i.e. wk+1 = Λ̃(k)wk + Γ̃(k)ūk.
Since the process is linear we have that wk+1 ∈
Co
{
w`k+1|k|l ∈ Lv

}
. Thus, it can be written as

wk+1 =
∑
l∈Lv

µ`w
`
k+1|k, (22)

in which µ` are appropriate scalar weights. At
time k + 1, we consider as a candidate input
sequence{
ūk+1|k, . . . , ūk+N−1|k,

∑
l∈Lv

µ`(Θw`k+N |k + Ψv)

}
.

Under this control sequence, the augmented state
predictions at time k + 1 evolve in the convex
hulls of the predictions made at time k. Moreover,
the proposed sequence is feasible with respect to



input constraints and such that w`k+N+1|k+1 ∈ W
for all ` ∈ Lv. Under the assumption that the
problem (20) is feasible at time 0 (essentially, this
means that the horizon is long enough to reach the
invariant set after N moves), we have by induction
that (20) remains feasible at any time. Given that
the cost function is convex in its arguments, we
have that, at time k + 1 the candidate control
sequence satisfies the constraints and yields a cost,
say Φk+1, no larger than the optimal one at time
k, say Φ̄k. It is easy to see that Φk+1 ≤ Φ̄k −
L(wk, ūk). Since, this sequence may be subopti-
mal, we have that the optimal cost at time k + 1,
denoted with Φ̄k+1 satisfies

Φ̄k+1 ≤ Φk+1 ≤ Φ̄k − L(wk, ūk) . (23)

The cost is monotonically non increasing, bounded
below by zero and, therefore, it converges. Thus,
we have that Φ̄k − Φ̄k+1 → 0 which implies that
L(wk, ūk)→ 0. This means that, either wk asymp-
totically enters W or zk → z̄, ∆uk → 0, i.e. the
plant state and input reach stationary values. But,
as previously remarked, all the stationary points
for the closed-loop system are included inW, and
the proof is complete. �

Theorem 2. Under the assumptions of Theorem 1,
also assume that the plant is ULTI. Then, the
feedback control law defined by Algorithm 1 drives
the controlled variable z = Hx to its desired
target z̄ without offset.

Proof. From Theorem 1 we have that the closed-
loop state enters the invariant setW and, since the
system is ULTI, it reaches a steady state. Thus,
by construction of the unconstrained control law
that is applied in the invariant region, we have
that limk→∞ zk = z̄. �

3. ILLUSTRATIVE EXAMPLE

We consider a LTV system as in (1) in which
(A1 = 0.9, B1 = 1), (A2 = 2, B2 = 2). Notice
that the convex hull includes both stable and
unstable plants. The controlled variable is z = x
and its target is z̄ = 1. We choose as controller
tuning matrices Q = 1, R = 1 and for the
target calculation Rs = R, ū = 0. The offline
optimization returns the following values for the
nominal model and disturbance models:

Am = 1.39, Bm = 1.45,
Bd = 1.48, Cd = 0.07 .

The input is constrained:

−1.5 ≤ uk ≤ 1.5,

and, using the outlined method (Blanchini, 1994),
an invariant region W ⊆ R

4 for the closed-loop
state is computed. This invariant region consists
of ten linear inequalities.

Time interval A(k) B(k)
0 ≤ k ≤ 19 A1 B1

20 ≤ k ≤ 39 A1+A2
2

B1+B2
2

40 ≤ k ≤ 60 A2 B2

Table 1. Plant matrices.

We present the simulation results for the case in
which the initial state is x0 = −2.5. The plant
matrices vary during the simulation as described
in Table 1. The input u and the controlled variable
z are reported in Figure 1.
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Fig. 1. Controlled variable and input.

4. COMMENTS AND REMARKS

As expected, the proposed control algorithm is
able to track nonzero set points without offset,
independently of which plant is running. It is
interesting to notice that the input steady-state
target changes when the actual plant changes. The
strength of this algorithm is its ability to drive the
input to its correct target without knowing the
actual plant.

Another interesting simulation (not shown) re-
gards the case in which the plant randomly varies
in the uncertainty region. The closed-loop system
is stable, since the closed-loop state reaches the
invariant region (see Theorem 1), and the con-
trolled variable remains within a neighborhood of
the target. Obviously, it is impossible to achieve
an asymptotic zero offset, since every time that



the plant changes the input needs to be changed
to its new target.

A straightforward extension of this method is to
the case of time-varying set points (piece-wise con-
stant). After having computed a nominal model
and disturbance model, we need to compute (off
line) for each set point a corresponding invariant
region. The results presented in this work apply
to this case provided that, every time that the set
point changes, the corresponding initial optimiza-
tion problem is feasible.

Finally, a further variation of the on-line opti-
mization method is to consider the horizon as a
decision variable. In this way, the horizon required
to reach the invariant region can be minimized as
discussed by Scokaert and Mayne (1998).

5. CONCLUSIONS

In this paper, a robust model predictive control
formulation has been proposed. The controller
has been formulated as a dual-mode regulator
in which the inner unconstrained controller is
designed (off line) in order to achieve offset-free
performance for any plant in an uncertainty con-
vex region (convex hull). By using the theory of
robustly invariant sets, an appropriate region in
which this unconstrained controller satisfies the
constraints has been defined. Next, an on-line
optimization min-max problem is solved to com-
pute the input sequence that drives the terminal
state to the invariant region, while satisfying the
constraints. It has been shown that the proposed
algorithm stabilizes any time-varying system in
the convex hull. Moreover, when the system is
unknown but time invariant it has been shown
that the proposed controller drives the controlled
variable to its corresponding (possibly nonzero)
target. Finally, an application example has been
presented, in which the offset-free properties of
the controller have been shown.
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