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Abstract: This paper presents a study of state estimation for active steering of profiled 
wheels. Fundamental characteristics of a solid-axle wheelset are explained and the 
potential benefits of active steering are discussed. The paper studies the non-linearity of 
the wheelset caused by profiled wheel-rail contact surfaces and develops a recursive 
non-linear Kalman filter to provide reliable and accurate estimations of the wheelset 
state. Real wheel and rail profiles are used in the study and a non-linear model is 
developed to represent the wheelset. Computer simulations are used to verify the design 
and assess its performance. Copyright   2002 IFAC 
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1. INTRODUCTION 
 

Active controls for railway vehicles have been 
studied for many years and recently attracted 
increased interest (Goodall, 1997). It has been 
demonstrated that, by using advanced control 
technology and mechatronic concepts to replace the 
traditionally mechanical components of the 
suspensions, the performance of railway vehicles can 
be significantly improved. Active tilt control for 
trains is now becoming a standard technology and 
tilting trains are in commercial operation throughout 
European. However an important emerging area of 
interest is to consider active control for the basic 
guidance function of a railway vehicle. At the 
moment this is provided mechanically by means of 
wheelsets in which coned/profiled wheels are 
connected by a solid axle, but there are some difficult 
trade-offs between ensuring stability and making sure 
the vehicle goes round curves without creating noise 
and wheel/rail wear. Active control provides the 
possibility both to provide the essential stability 

control and to improve the vehicle performance on 
curves (Mei and Goodall, 2000). For practical 
applications different controls can be developed to 
achieve different steering/stability strategies, e.g. 
minimising the wear or balancing the track shifting 
forces. A number of papers have studied various 
control strategies as well as actuation configurations 
(Leo, 1985; Aknin et al 1991; Wickens, 1991; Shen 
and Goodall, 1997; Mei and Goodall 2000; 
Gretzschel and Bose, 2000).   
 
However one of the well known difficulties is that 
active controls often require feedback signals that are 
not readily available and cannot be easily and 
economically measured in practice. To enable 
practical implementations of the active solutions, it is 
therefore essential to find effective methods that will 
provide accurate and reliable information of those 
signals. A study of model based estimation 
techniques has been carried out, where a re-
formulated Kalman filter is used to estimate not only 
the state variables of a railway wheelset but also to 
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calculate parameters such as curve radius and cant of 
the railway track on which the wheelset is travelling 
(Li and Goodall, 1999). The technique is also 
extended to a two-axle vehicle and the filter output is 
used for an optimal controller developed to actively 
steer the two wheelsets. In both studies, coned 
wheels with constant conicity (i.e. linear profiles) are 
used. For wheels with non-linear profiles, which are 
almost always the case in practice, studies have 
found that the assumption of constant conicity would 
result in an inaccurate estimation for some of the 
state variables although it does not appear to affect 
the stability of the control system. Clearly the 
Kalman filters produced will need to be developed 
further to tackle the issue of the variation in conicity 
in order to improve the estimation accuracy. 
 
This paper explores the possibility of state estimation 
for real profiled wheels, and the study is based on the 
fact that the profile of a wheel tread can be made 
known, and accessible to the estimator. In section 2, 
key properties of a solid-axle wheelset are explained 
and non-linear profiled wheels are introduced. 
Section 2 also introduces a mathematical model of 
the wheelset. A linerisation process of the wheel-rail 
contact geometry is carried out and the development 
of a recursive Kalman filter is presented in section 3. 
Simulation results and performance assessments are 
given in section 4. 
 
This study concentrates on a single wheelset only in 
order to develop the basic principle of such an 
approach, but the outcome can be easily extended to 
vehicles with multiple axles. 
 
 

2. SOLID-AXLE WHEELSET 
 
As shown in Figure 1, a solid-axle wheelset consists 
of two coned/profiled wheels connected rigidly to a 
common axle so that they must rotate at the same 
angular velocity. The advantage of the arrangement 
is that the wheelset has the ability of natural curving 
and centring. This can only happen when the wheels 
are coned or profiled such that a difference in contact 
radius between the two wheels can be formed to 
cover the different travel distances of the outer and 
inner rails when the wheelset is off the centre line or 
on a curved track. 
 
 
 
 
 
 
 
 
 
 
 
 
 

However the wheelset alone also exhibits a sustained 
kinematic oscillation in the lateral plane commonly 
referred as the “wheelset hunting”. This is overcome 
on conventional railway vehicles with the use of a 
yaw stiffness, which on the other hand degrades the 
ability of the wheelset to curve and results in severe 
wear of the wheels and rails. To solve this difficult 
design conflict between the curving, the dynamic 
performance and the stability, active steering controls 
have been proposed (Mei and Goodall, 2000) - the 
motivation of this study to provide necessary 
feedback signals. 
 
It is common that the coned wheels with constant 
conicty are used in the study of wheel-rail contact 
mechanics, a useful simplification of a very complex 
problem. However in practice real wheel rim and 
rail-head are of non-linear profiles and the rolling 
radius of the two wheels at the contact point varies 
with relative wheel-rail lateral position. Figure 2 
shows a typical non-linear profile for the wheel and 
rail which will be used in the study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this case the conicity is no longer a constant value 
and therefore the model for constant conicity, which 
can be found in most published literature, is no 
longer adequate to represent the wheel rolling radius 
accurately. Figure 3 demonstrates how the wheel 
radius changes with the position. A general form for 
the representation of the rolling radii can be 
expressed in equation 1, in which (y-yt) is the relative 
lateral movement between the wheel and rail, and 
rL0(.) and rR0(.) are functions that represent the non-
linearity. 
 
 

(1) 
 

 
For the purpose of this study, the wheelset is 
stabilised by the use of a spring-damper in series 
placed in the lateral direction. The equation of 
motions for the wheelset with the stabilisation can be 
derived as given in equations 2-4. 
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Rail 

Contact radius 

Axle  
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Figure 1. Solid-Axle Wheelset 

Figure 2. Non-linear Wheel and Rail Profiles 
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3. KALMAN FILTER DESIGN 
 
In the development of the Kalman filter, the changes 
of rolling radius in the two wheels of a wheelset 
shown in Figure 3 are linearised and expressed in 
equations 5 and 6, where yd = y-yt is the wheel-rail 
lateral displacement. 
 
 
 

(5) 

 
 

 
 

(6) 
 
 
From equations 5 and 6, a general form of the radius 
changes can be represented as follows: 
 

(7) 
 

(8) 
 
And hence  
 

(9) 
 

(10) 
 
 
From equations 2, 3, 4, 9 and 10, a discrete time 
state-space form model can be formulated as given in 
equation 11. In the model, the random track 
irregularity (yt) and deterministic track features (R, θ) 
are included as the part of the states - an approach 
which has shown to be very effective for the 
estimation of all wheelset state variables on both 
straight and curved tracks (Li and Goodall, 1999; 
Mei etc, 1999). In addition, the radius changes of the 
right and left wheels are also formulated as two extra 
state variables to deal with the variation in conicity 
between the two wheels. Three inertial sensors 
(lateral accelerometer, yaw and roll gyros) are used 
to provide the measurements for the Kalman filter 
and equation 12 gives the output equation. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

(11) 
 
 
 
 

Figure 3. Rolling radius changes with profiled 
wheel-rail  
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(12) 
 
 

 
Equations 11 and 12 can be re-expressed as shown in 
equations 11a and 12a 
 

(11a) 
 

(12a) 
 
Equations 11a and 12a form the basis for the design 
of the recursive Kalman filter. The flow chart in 
Figure 4 shows the execution sequence of the re-
formulated Kalman filter, and the design detail of the 
Kalman filter can be found in (Li, 2001). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
As the contact geometry of each wheel is partitioned 
into three linearised sections, the Kalman filter is 
required to determine for each wheel which section is 
in contact with the rail and hence to decide its 
operating point. In each sampling period all the state 
variables are estimated including the radius changes 
rL0 and rR0. The outcome is then used to update the 
operating point by re-computing the state space 
matrices in equation 11 and to re-calculate the 
Kalman filter gain matrix K(k). Consequently, a 
linearised model is calculated at each iteration based 
upon the current estimated state vector. This is often 
referred to as an Extended Kalman Filter or EKF in 
short (Maybeck, 1979). The Extended Kalman Filter 
algorithm is well documented in the literature 
(Maybeck 1979), and although global convergence 
cannot be guaranteed, experience has shown the 
algorithm to be robust. 
 
 

4. SIMULATION STUDY 
 
To study the performance of the Kalman filter, both 
deterministic and random track inputs are used in the 
simulation. The deterministic track used is a typical 
low speed curve, including a constant curve with the 
curve radius of 200m and a transition lasting around 
two seconds on either side to the straight track; the 
random track is derived from a filtered white noise 
generator to give an appropriate power spectrum for 
the lateral deviations. Note also that the track is 

k = 1 

Set initial conditions state x(0), & calculate 
initial covariance estimation error matrix P(0)

Update system model (A and G) 
Predict covariance matrix P_=A2P+G2Q 
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Figure 4. Flow chart diagram of Kalman filter Figure 5. Wheel-rail lateral displacement  
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canted during the curve to reduce the lateral 
acceleration experienced by the passengers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 5 shows the true and estimated wheel-rail 
lateral displacement, and the estimation error of the 
profiled wheelset on the curved track. The results for 
the angle of attack, i.e. the relative angle between the 
wheelset and the track in the yaw direction, and its 
estimation error are given in Figure 6. Clearly good 
estimates for the wheel-rail lateral displacement and 
angle of attack are obtained and its performance is 
very similar to the results obtained for the three-
sensor Kalman-Bucy filter estimation for the coned 
wheelset where the physical model and estimator use 
the same conicity value (Li and Goodall, 1999). The 
small error is mainly due to the measurement noise. 
In the simulation all measurement noises are set to 
2% of their maximum values, which is determined by 
taking 3 times their true (rms) value on the straight 
track with irregularities, plus the peak value of their 
responses on the pure curved track. 
 
As the changes of the left and right wheel radius at 
the contact point with rail are included as two extra 
state variables, the Kalman filte also estimates those 
two parameters well, as demonstrated in Figure 7. 
The estimated radius changes are very close to the 
actual changes, although the estimation accuracy 
obviously depends on the closeness of the 
linearisised curve to the real one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The curvature and cant angle of the track on which 
the wheelset is travelling can also be estimated as the 
two are also formed as part of the state vector, even 
though the track deterministic features are strictly not 
part of the vehicle dynamics. Figure 8 shows the 
estimated track curvature and estimation error, and a 
similar result is obtained for the cant angle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
On random track similar estimation performance is 
obtained. Figure 9 gives the estimated wheel-rail 
lateral displacement and its estimation error. It can be 
seen that the estimation error is relatively large, but 
mostly within ±1mm. Figure 10 shows the estimated 
angle of attack and its estimation error. There is a 
low frequency component of the estimation error on 
the angle of attack, which is very similar to what has 

Figure 6. Wheelset angle of attack  

Figure 7. Radius changes of two wheels  

Figure 8. Estimation of track curvature  

Figure 9. Wheel-rail deflection (random track) 

Figure 10. Wheelset angle of attack (random track) 
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been observed before (Li and Goodall, 1999; and Mei 
etc, 1999). The cause of the relatively large 
estimation error is not entirely clear, but the sensor 
noises and the low level of the attack angle in the 
study are contributing factors 
 
 

5. CONCLUSIONS 
 
This paper has presented a detailed study of state 
estimation for profiled wheels. The study has firstly 
discussed the need of a radical solution via active 
means to solve the problems associated with the 
design conflict between stability and curving of a 
solid-axle wheelset. It has then concentrated on the 
development of a recursive non-linear Kalman filter 
to provide reliable and accurate state estimations of a 
wheelset with non-linear wheel and rail profiles. 
 
The performance of the Kalman filter has been 
evaluated by using computer simulations. It has been 
demonstrated that the Kalman filter deals with the 
non-linearity well and gives adequate estimations of 
the state variables of the wheelset on both random 
and curved tracks. This performance has been made 
possible by augmenting the estimator to include track 
and wheel-rail contact parameters as extra states. 
 
For further work, it will be necessary to study the  
performance and robustness of the estimator in 
particular for the profile variation due to wear and 
tear of the wheels and track. The study could also be 
extended to investigate overlapping of the local 
models in the sense of fuzzy or probabilistic local 
model networks. In addition the authors are involved 
in practical implementations of active steering and it 
is hoped that the data from relevant tests will be used 
for a more comprehensive assessment. 
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APPENDIX. SYMBOLS AND PARAMETERS 
 

cy  Lateral damping per wheel (6400 kN s/m) 
f11  Longitudinal creep coefficient (10 MN) 
f22   Lateral creep coefficient (10 MN) 
g   Gravity constant (9.81 m/s2) 
I    Wheelset yaw inertia (700 kg m2) 
ky    Lateral stiffness per wheel (3200 kN/m) 
l   Half gauge (0.75 m) 
m   Vehicle mass (1250 kg)  
R    Track curve radius (200 m) 
r0    Nominal wheel radius (0.45 m)  
v   Vehicle travel speed (18.4 m/s) 
y   Wheelset lateral displacement  
y1   Displacement of the connection point 

between the lateral stiffness and damper   
yt   Lateral random track input   
θ    Track cant angles (60) 
ψ   Wheelset angle of attack 
A  State space model system matrix 
G  State space model input matrix 
C  State space model measurement matrix 
P  Kalman Filter state estimation error 

covariance matrix (corrected) 
P_  Kalman Filter state estimation error 

covariance matrix (predicted) 
K  Kalman filter gain matrix 
k  iteration step of Kalman filter 
Q Process noise matrix 
R  Measurement noise matrix 
x  State space model state vector 
Y  State space model output vector 
^  denotes estimated vectors within the 

Kalman filter 
 
 


