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Abstract: This paper presents an LMI-based method for the design and tuning
of robust H2 output feedback controllers, illustrated with two case studies. The
conservatism of design is considerably reduced by a proposed scaling procedure,
referred to as K-S iteration. The method is applied to the ACC benchmark problem
and shown to outperform previously published solutions. The choice of tuning
parameters and tuning strategies are discussed in detail. Real-time experiments
on an experimental version of the benchmark problem demonstrate the practicality
of the proposed approach.
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1. INTRODUCTION

It is well known that most practical control prob-
lems are still being solved using PID control or
lead-lag compensation, because of the simplicity
of tunig the parameters of such a controller. So
far, the impressive recent developments in the area
of robust control theory have failed to make much
impact on how real-life problems are solved, the
main reason being the complexity of the design
and tuning procedure. Another serious problem
associated with robust design strategies is their
inherent conservatism. Both issues are addressed
in this paper.

The approach followed here is known as robust
H2 controller design: Given a linear system with
uncertainty in the system parameters, find the
linear, time-invariant controller that minimizes a
worst-case H2 performance index.

The robust H2 problem has been studied in
(Packard and Doyle, 1987) and (Stoorvogel, 1993).
In (Petersen and McFarlane, 1994) bounds were
proposed on the worst-case H2 norm of a sys-

tem subject to norm-bounded, time-varing un-
certainties. In (Feron, 1997) it was shown that
the computation of all these bounds on the H2

performance can be reduced to a convex optimiza-
tion problem involving linear matrix inequalities
(LMI), which can be solved via efficient convex
optimization techniques.

The main contribution of this paper is to propose
a simple, LMI-based design and tuning strategy
for robust H2 controllers, and to demonstrate
its efficiency with two illustrative case studies.
This approach is based on a simplified version
of the work in (Apkarian et al., 1996) (chapter
4, page 88). There, two sets of scaling matrices
were used to characterize the uncertainty, while
the approach proposed in this paper uses only
one scaling matrix. The choice of the scaling
matrix determines the degree of conservatism of
the design. Using convex optimisation to find the
best scaling is not possible because this problem
is non-convex in the output feedback case; to
overcome this difficulty, an iterative procedure
- referred to as K-S iteration - is proposed in
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this paper. The K-S iteration technique leads to
an efficient design procedure where only up to
three intuitive parameters are used for tuning the
controller.

The paper is organised as follows. In section 2, the
robust H2 approach is briefly reviewed, and an
iterative procedure is proposed for reducing con-
servatism. The proposed method is then applied
to the ACC benchmark problem in section 3. A
real-time implementation is presented in section
4, together with experimental results. Conclusions
are drawn in section 5.

2. ROBUST H2 CONTROL AND
K-S ITERATION

Consider the control system shown in Figure 1.
The generalised plant P has a state space repre-
sentation

ẋ = A0x+B1w1 +B2w2 + Bu

z1 = C1x

z2 = C2x+D2uu

y = Cx +D2ww2 (1)

Here (A0, B, C) represents the physical plant with
control input u and measured output y. Pertur-
bation of the nominal plant dynamics (A0) are
expressed via fictitious inputs through B1 and
fictitious outputs through C1: Introducing feed-
back w1 = ∆z1, where the matrix ∆(t) represents
perturbations and is assumed to satisfy ‖∆‖ < 1
at all times, leads to

ẋ = (A0 +B1∆C1)x+B2w2 +Bu

The input w2 is a white noise process with unit
variance. If the matrices C2, D2u, B2 and D2w

are chosen as

C2 =
[
Q1/2

0

]
, D2u =

[
0

R1/2

]
(2)

B2 = [Q1/2
e 0], D2w = [0 R1/2

e ] (3)

then

J = E‖z2(t)‖2
2 = E

[
lim

t→∞
1
T

∫ T

0

zT
2 z2 dt

]
(4)

represents a LQG cost function with the usual
weight matrices Q, R and noise covariances
Qe, Re.

The problem considered in this paper is to find
a strictly proper controller K(s) with state space
realisation

ζ̇(t) = AKζ(t) +BKy(t)
u(t) = CKζ(t) (5)

such that the LQG cost is guaranteed to be less
than a given value J ≤ ν2 in all admissible
operating conditions, i.e. for all ‖∆‖ < 1.

∆
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w z

y

K

11
w2 z2P

Fig. 1. Generalized plant

This problem can be expressed in the form of
linear matrix inequalities as follows. Consider the
closed-loop system[

ẋ

ζ̇

]
= Ā

[
x
ζ

]
+ [B̄1 B̄2]

[
w1

w2

]

[
z1

z2

]
=

[
C̄1

C̄2

] [
x
ζ

]
where

Ā =
[

A0 BCK

BKC AK

]
, B̄1 =

[
B1

0

]
, B̄2 =

[
B2

BKD2w

]

C̄1 = [C1 0], C̄2 = [C2 D2uCK ]

In the control system in Figure 1, the performance
index satisfies J ≤ ν2 for all ‖∆‖ < 1 , if there
exist a positive definite matrix P and a matrixW
such that

traceW < ν2

and

PĀT + ĀP P C̄T

2 PC̄T
1 B̄1S

C̄2P −I 0 0
C̄1P 0 −S 0
SB̄T

1 0 0 −S


 < 0,

[
W B̄T

2

B̄2 P

]
> 0

(6)
For a proof see the full version of this paper (Farag
and Werner, 2001). Here the matrix S is a suitable
positive definite, symmetric scaling matrix that
satisfies S∆ = ∆S for all admissible ∆; the choice
of S is discussed below (when ∆ is square and
diagonal, S is diagonal).

Conservatism of Design and K-S Iteration

The closed-loop matrices Ā, B̄2 and C̄2 in (6)
depend on the controller matrices AK , BK , CK .
Due to the presence of the product terms ĀP and
C̄2P , (6) cannot be solved as an LMI problem
for the controller, because it is nonlinear in the
controller matrices and the matrix variable P .
However, a linearizing change of variables, pro-
posed in (Chilali and Gahinet, 1996), can be used
to transform (6) into an LMI problem that can be
solved with efficient LMI solvers.

On the other hand, the matrix inequality (6)
is only a sufficient condition for the worst case
bound on the performance. The resulting conser-
vatism can be reduced by a suitable choice of



the scaling matrix S. The form of (6) suggests
to treat S as a matrix variable and solve an
LMI problem to find the scaling that yields the
best worst-case performance. Unfortunately, the
linearizing transformation introduces a term that
is nonlinear in S and the controller variables. To
overcome this problem, we propose the following
iterative technique, for more details, see (Farag
and Werner, 2001)

K-step: Assume S = I and solve

min
K(s),P

traceW subject to the linearized form of (6)

S-step: Using the controller obtained in the ’K-
step’, solve

min
P,S

traceW subject to (6)

Go back to the ’K-step’ and repeat with S ob-
tained in the ’S-step’ until no further drop in trace
W is observed.

3. THE ACC BENCHMARK PROBLEM

This problem was proposed as a benchmark prob-
lem for robust control at the American Control
Conference 1990 (Wie and Bernstein, 1990). Two
bodies with massesm1 andm2 are connected by a
spring with stiffness k, as shown in Fig. 2. A state
space model of the system is


ẋ1

ẋ2

ẋ3

ẋ4


 =




0 0 1 0
0 0 0 1

−k/m1 k/m2 0 0
k/m2 −k/m2 0 0






x1

x2

x3

x4




+




0
0

1/m1

0


u+




0 0
0 0

1/m1 0
0 1/m2




[
d1

d2

]
,

y = x2 + v (7)

For this position control system three robust de-
sign problems were posed in (Wie and Bern-
stein, 1990). The problem considered here is the
union of problems 1 and 2 in the original ref-
erence; the same problem was also studied in
(Thompson, 1995) and can be summarized as fol-
lows.

Design Problem: For a unit impulse disturbance
exerted either on body 1 or 2, the controlled
output x2 must have a settling time of no more
than 15 sec for the nominal system (m1 = m2 =
k = 1; the settling time ts is defined by |x2| <

d1

u
m1 m2 d2

k

x1 x  = y2

Fig. 2. Two-mass-spring system

0.1∀t ≥ ts). The closed-loop system should be
stable for 0.5 ≤ k ≤ 2.0 and m1 = m2 = 1, and
show robustness against variations of m1 and m2.

Since k is only known to be in the range 0.5 ≤ k ≤
2.0, it is required to construct matrices B1, C1

such that the uncertain matrix A in the state
space model (7) can be expressed as

A = A0 +B1∆C1 with − 1 < ∆ < 1 (8)

From (7), a straightforward choice is

A0 =




0 0 1 0
0 0 0 1

−1 1 0 0
1 −1 0 0


 , B1 = δ




0
0
1

−1


 ,

C1 =
[−1 1 0 0 ]

(9)

The sytem matrix A0 corresponds to the nominal
stiffness k0 = 1. A tuning parameter δ > 0
has been introduced that can be used to scale
the uncertainty: when δ = 0 the representation
(8) is reduced to the nominal model, and larger
values of δ mean that a larger range of uncertain
parameters is covered.

A quadratic performance index is included in the
model by choosing the matrices C2, D2u, B2 and
D2w in (1) according to (3), with

Q = qI, Qe = qeI, R = 1, Re = 1

This representation leaves the designer with three
tuning parameters q, qe and δ. Once values for
these parameters have been chosen, the K-S iter-
ation procedure presented in the previous section
can be applied to compute the controller.

Tuning Parameters

The influence of δ on performance and robustness
is shown in Figure 3. As expected, the price
to be paid for improving the robustness of the
system (decreasing kmin, the minimum spring
constant for which the system is stable) is a loss
of performance (i.e. larger values for ts).
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Fig. 3. Influence of δ on robustness and
performance(q = qe = 1)

Figure 4 illustrates how variation of δ deter-
mines the trade-off between control effort and
robustness. The maximum control input is plotted
against kmin when δ is varied (stability is more dif-
ficult to achieve at kmin than at kmax). Curves are
shown for different values of q and qe; as expected,
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Fig. 4. Control effort versus robustness

larger values of q and qe lead to a higher control
effort. However, the plots also suggest that q and
qe have a similar effect on the system response: the
curve for q = 100, qe = 10 is almost the same as
that for q = 10, qe = 100. Therefore in the tuning
process described below only qe was used as tuning
parameter, and starting from initial values, q was
adjusted proportionally.

Figure 5 shows the effect of qe on performance and
robustness. A larger value of qe leads to a faster
response, but at the same time to less robustness
and a larger control effort.
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Fig. 5. Influence of qe on speed and robustness

Design and Tuning of a Robust H2 Controller

The first step in the tuning procedure is to find
suitable starting values for the three tuning pa-
rameters q, qe and δ. Initially, the system response
was evaluated with q, qe and δ taking combina-
tions of an initial range of values. This test can be
carried out by running a simple Matlab routine;
the initial values were {0.01, 0.1, 1.0, 10, 100} for q
and qe, and {0, 0.1, 0.2, 0.3, 0.4, 0.5} for δ.
It was found that the gain margin and the phase
margin requirements can be satisfied only when
q, qe < 0.1 and δ < 0.2. The choice of q =
0.01, qe = 0.1, δ = 0.1 results in a controller

Design Reference PM GM ts umax kmin − kmax pm Score
(equation) (deg) (dB) (sec)

Requirement 30 6.0 15 1 0.5 - 2.0 0.30

Robust H2 this paper (10) 32 6.6 14.5 0.55 0.410 - 3.1 0.48 8.5

Classical/H2 (Thompson, 1995) (19) 35 6.0 14.5 0.759 0.450 - 2.800 0.41 7.3

H∞ (Wie et al., 1992) (40) 34 6.1 15.2 0.573 0.440 - 3.900 0.45 6.4

Pole placement (Lilja and Astrom, 1992) next after (5) 24 3.7 28.9 0.549 0.230 - ∞ 0.37 0.7

µ-synthesis (Braatz and Morari, 1992) (29-32) 27 2.8 14.1 0.953 0.580 - 2.500 0.37 -0.1

Minimax LQG (Mills and Bryson, 1992) (37) 19 3.4 18.1 0.691 0.690 - 1.400 0.18 -7.2

QFT (Jayasuriya et al., 1992) (8) 11 2.5 4.7 345.9 0.180 - 1.300 0.09 -19.0

Table 1. Controller performance
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that satisfies all requirements except the settling
time requirement.

To achieve a faster response, qe was slightly
increased. The controller obtained with q =
0.02, qe = 0.2 and δ = 0.1 is K(s) =

0.0615(s− 8.0097)(s+ 2.2270)(s+ 0.1326)
(s2 + 0.7379s+ 2.4270)(s2 + 1.5976s+ 0.8105)

(10)
This controller satisfies all requirements of the
benchmark problem. In (Thompson, 1995), a
scoring scheme was proposed to evaluate and
compare the performance of different controllers.
The achieved performance measures are shown
in Table 1, and compared with the performance
achieved in (Thompson, 1995) and a collection
of controllers presented in (Special Issue, 1992),
including the three best designs. It is clear that the
proposed robust H2 design outperforms all other
controllers. Moreover, the design procedure is sim-
ple and it would be straightforward to re-tune
the controller to trade speed of response against
robustness, or both against control effort. Figure
6 shows the response to a disturbance impulse at
mass 2, with spring constants 0.5, 1.0 and 2.0.

The representation (1) of the model uncertainty
with matrices (B1, C1) is not unique, for example
with a scaling factor δ the same parameter



uncertainty can be expressed by (δB1, δ
−1C1). It

turns out that when solving (6) with S fixed,
the minimum achievable value of the performance
index J depends on the selection of the matrices
B1, C1. To illustrate this point, consider two pos-
sible scalings of the matrices B1, C1. Let B0, C0

be given by:

BT
0 = [0 0 1 − 1]T , C0 =

[
0 0 −1 1 ]

and consider the following different ways of scaling
B1, C1

case 1: B1 = δB0; C1 = C0

case 2: B1 = B0; C1 = δC0

Case 1 is identical with the choice of the tuning
parameter δ in (9). The first line in table 2
(iteration 0) gives the values of J when (6) is
solved with setting S = 1 (in case 2 the start
value S = 0.1 was used because the problem is
infeasible for S = 1).

The point to observe here is that for the same
values of δ, qe and q, solving (6) without K-S
iteration results in two different controllers with
different perfomance. On the other hand, two
steps of K-S iteration lead to the scaling S and
the controller that yield the minimum cost Jmin ≈
73.5 in both cases. Note that the optimal scaling
is different for each case.

It. case 1 case 2

S J S J

0 1.0 73.6 0.1 628

1 1.17 73.49 0.0109 73.65

2 1.19 73.49 0.0119 73.55

Table 2. Cost variation with number of
iterations (at q = 0.2, qe = .1, δ = 0.1)

4. REAL-TIME CONTROL OF A
RECTILINEAR PLANT

The electromechanical plant used to represent
the ACC benchmark problem, is the rectilinear
mechanism shown in Figure 7, manufactured by
ECP systems. The actuator is a brushless DC
servo motor, acting on the first mass. The signal
used for feedback is the position of the second
mass, measured with a high resolution encoder.
Three springs are available with different stiffness.
To realise the configuration of the ACC bench-
mark problem, the second spring - connected to a
third mass - was removed. The Matlab Real-Time
Windows Target interface was used for real-time
controller implementation (with sampling time 2
ms).

The original regulator problem was modified into
tracking a step change in the reference position.

Fig. 7. Rectilinear plant model 210/210a by ECP
systems

Therefore, the plant model is augmented with
an integrator to include integral action in the
controller. In a first step, the controller K(s) is
designed for robust stability of the closed-loop
dynamics. A prefilter is then added to shape the
response by reducing overshoot, for more details
see (Farag and Werner, 2001).

Again the scaling parameter δ plays a central role
when tuning the controller K(s). In addition, in
this real-time application it was found convenient
to introduce a pole region constraint in the form of
an upper bound xr on the real part of the closed-
loop poles. The parameter δ has a direct influence
on the robustness against variation in the spring
constant k, while tunig xr has a direct influence
on the rise and settling time. The penalty R on
the control effort in the LQG cost (3) can be used
to limit the control energy when it is needed.

The following strategy was used for tuning the
controller.

• Based on the state space model, compute for
a given value of xr the value of δ for which
the stability boundary is reached

• Implement the controller resulting from this
choice of δ and check the response in real
time. The parameter xr can be used to make
the response faster or slower

• If the actuator saturates (expected at fast
response), the LQG weight R can be used
to reduce control energy.

It turned out that the robustness requirements
cannot be satisfied for xr < −5.5. The design
prameter R was needed for xr < −4 to limit
the control energy. Figure 8 shows the influence
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Fig. 8. The influence of δ and xr on kmin
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Fig. 9. Experimental results (xr = −4.5)
of varying δ and xr on kmin; as expected varying
δ has not much effect when the system is too slow.
The response when xr = −4.5 is shown in Figure
9.

To overcome static friction and reduce the steady
state position error, a large open-loop gain at low
frequencies is required. Table 3 illustrates that
increasing the magnitude of xr leads not only to a
faster response, but also to a higher low-frequency
loop gain, and thus helps to achieve higher steady
state accuracy.

δ R xr Settling umax loop gain at
time ω = 10−3 rad/s

180 1.0 -2.0 0.705 0.585 8.45 × 106

180 1.0 -3.0 0.695 0.580 8.69 × 106

180 1.0 -4.0 0.667 1.525 15.30 × 106

180 1.0 -4.5 0.547 6.414 25.50 × 106

185 10.0 -5.0 0.489 16.819 48.70 × 106

Table 3. Experimental results (medium
stiffness)

5. CONCLUSIONS

A systematic design and tuning strategy for ro-
bust H2 controllers has been proposed. The two
case studies presented in this paper illustrate an
important feature of this method: the design and
tuning procedure can be reduced to the choice of
three parameters, each with a clear impact on
certain aspects of performance and robustness.
This property can be exploited to develop semi-
automatic design and tuning procedures for high-
performance controllers. Once a controller for a
given application has been designed and tuned,
suitable ’tuning knobs’ can be made available to
users, in order to enable re-tuning of the control
settings, if significant changes in the operating
conditions make this necessary.
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