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Abstract: A controller is developed to make surface ships track a reference trajectory
using only position and heading measurements for feedback under the environmental
disturbances. The controller is first developed for full state feedback. A nonlinear dynamic
filter, which is fundamentally different from the linear and high gain filters used in
literature, is then designed to construct surge, sway and yaw velocities. The solution
utilizes several properties of the ocean surface ships. Numerical simulations on a
monohull ship with the length of 32 illustrate the effectiveness of the proposed controller.
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1. INTRODUCTION

Measurements of the ship velocities for most ships
are not available and often corrupted with noise.
Therefore, for feedback ship control systems, ship
velocities need to be computed from position and
heading measurements. In conventional feedback
ship control systems, the ship velocities are often
estimated by using Kalman filter. The nonlinear ship
model is linearized around the operating points. A
typical example is the linearization of the kinematic
equations of ship motion about a set of 36 constant
yaw angles separated by 10 degrees in order to cover
the whole operating area of 360 degrees. For each of
these linearized models, Kalman filters and control
gains have to be computed and then modified on line
using gain scheduling techniques. Although some
acceptable results have been achieved the
aforementioned linear control systems have certain
drawbacks. They are developed based on linear
models while the ship motion dynamics are
inherently nonlinear. The useful nonlinearities are not
utilized in the control design. They require a
considerable amount of tuning work. The ad hoc
nature of the linearization approach does not
guarantee the desired stability and convergence

properties, which mean a poor performance of the
closed loop system.

The problem of output feedback, i.e. only position
measurements are available for feedback, control of
surface ocean vessels has been a topic of
considerable interest since velocity measurement
sensors are often contaminated with noise and are
expensive. However the previous work targeted at
the output feedback control problem to achieved
global results was only devoted to dynamic
positioning of ships (see Fossen (2000), Fossen and
Grovlen (1998), Aarset et al. (1998)). In these works,
the square term of velocity due to the Coriolis matrix
was ignored since the vessel operates at low speed in
dynamic positioning. Then several types of observer
were designed to estimate vessel velocities in surge,
sway and yaw. A common feature of the proposed
output feedback controller for dynamic positioning is
that the observers are first designed such that the
observer error is asymptotically stable then the
control inputs are designed by using the information
from the observers.

The output tracking control of surface ships in one
degree of freedom has been addressed in literature.
Paulsen et al. (1998) derived a passive control law
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without velocity measurements and achieved
asymptotic stabilization result of the yaw angle. Vik
and Fossen (1997) utilized the approach developed
for robot control in Berghuis and Nijmeijer (1993) to
design an observer based controller to semiglobally
stabilize the heading angle. The approach in Vik and
Fossen (1997) was extended to the ship tracking
control in three degrees of freesom by Pettersen and
Nijmeijer (1999). Semiglobal tracking result was
derived. A different approach to deal with output
feedback control of ships is to apply a state
transformation to transform the ship dynamic system
into the so-called output injection form. However as
noted in Besancon (2000), the state transformation
solution cannot be found in generally for the case of
more than one degree of freedom.

In this paper, a controller is developed to force
surface ships track a reference trajectory using only
position and heading measurements for feedback
under the environmental disturbances. The controller
is first developed for full state feedback. A nonlinear
dynamic filter, which is fundamentally different from
the linear and high gain filters used in literature, is
then designed to construct surge, sway and yaw
velocities. The solution utilizes several properties of
the ocean surface ships. Numerical simulations on a
monohull ship with the length of 32 illustrate the
effectiveness of the proposed controller.

2. PROBLEM FORMULATION

The mathematical model of the ship moving in surge,
sway and yaw is obtained from the motion equation
of the ship moving in six degrees of freedom by
neglecting motion in heave, pitch and roll,
disturbances induced by wave, wind and ocean
current. Furthermore it is assumed that the inertia,
added mass and damping matrices are diagonal. This
assumption holds when the vessels have three planes
of symmetry, for which the axes of the body-fixed
reference frame are chosen to be parallel to the
principal axis of the displaced fluid, which are equal
to the principal axis of the vessel. Most ships have
port/starboard symmetry, and moreover bottom/top
symmetry is not required for horizontal motion.
Nonsymmetry fore/aft of the ship implies that the
off-diagonal terms of the inertia and damping
matrices are nonzero. However these terms are small
compared to the main diagonal terms. It is also
assumed that the damping is linear. This assumption
is valid for low speed application and for cruising at
a constant speed. For detailed development of the
mathematical model of a surface ship moving in six
degrees of freedom, the reader is referred to Fossen
[1994].

Under the aforementioned assumptions, the ship
moving in surge, sway and yaw can be described as
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where Tyx ],,[ ψη =  and Truv ],,[ ϑ= . The
variables ruyx   and  ,,,, ϑψ are surge, sway and yaw
displacements, surge, sway and yaw velocities
respectively. 3R∈τ  is the control force vector while
the environmental disturbance vector 3)( Rtw ∈τ  is
assumed to be bounded, i.e. ∞<≤ max)( ww t ττ .

DvCMJ   and  )(,),(ψ  are the kinematic, inertia,
Coriolis and centripetal, and damping matrices
including added mass effects respectively, and given
by
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The ship dynamics (1) are transformed into the earth
fixed coordinate as
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where we have kept ηψ !)(1−= Jv  for notation
simplicity. From the aforementioned assumptions on

DvCM   and  )(, , it is direct to show that the
following properties are satisfied.

Property 1.
       RMM T ∈∀>= ψψψ ηη ,0)()(          (4)
Property 2.
        RMMM ∈∀∞<≤≤< ψψη ,)(0 21           (5)

Property 3.
       3,,,),(),( RRCC ∈∈∀= βαψαβψβαψ ηη   (6)
Property 4.
       3,,0,),( RRCCC MM ∈∈∀>≤ αψααψη (7)

Property 5.
       ( ) 3,0),(2)( RssCMsT ∈∀=− ηψψ ηη !!            (8)



Property 6.
        3,,0)( RsRsDsT ∈∈∀> ψψη          (9)

The control objective is formulated as: Design a
control law τ  such that the tracking error

de ηη −= , with 3Rd ∈η  being the bounded twice
differentiable reference trajectory vector, globally
asymptotically converges to zero using only the
position and heading angle vector η  for feedback
when there are no environmental disturbances.
Furthermore the tracking error converges to an
arbitrarily small ball centered at the origin in
presence of bounded environmental disturbances.

3. CONTROL DESIGN

In this section, we first design a full state feedback
controller to achieve the control objective. We will
then construct a nonlinear dynamic filter to calculate
velocity vector.We define a filtered regulation error
as
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with [ ] [ ] TT ffffeeee 321321 , == , f  is an
auxiliary filter variable designed as
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where k is chosen later.
We consider the following function
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From property 1, it can be seen that the first part of V
is radially unbounded and globally positive definite
in s. In appendix A, we also show that the second
part of V is radially unbounded and globally positive
definite in ii fe   and   . Therefore, the function V
defined in (13) is a proper function. By taking the
first time derivative of (13) along the solution of (2)
and utilizing properties 1-6, we have
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where

























+

+

+

=

























+

+

+

=

2
3

2
2

2
1

2
3

2
2

2
1

1
100

0
1

10

00
1

1

  and  

1
100

0
1

10

00
1

1

f

f

f

C

e

e

e

C fe

(15)

From (14) we propose the control law, when the ship
parameters are known, as
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and  k is chosen as
-when there are no environmental disturbances
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There should not be confused in using the same
constant 2k  in (17) and (18) since its meaning is
clear.
By noting that
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       (19)
1≤eC                     

(20)

substituting (16) and (17) into (14) yields (noting that
for this case 0)( =twτ )

s)Atan()Atan()Atan()Atan( 1ksffeeV TTT −−−≤!

(21)
substituting (16) and (18) into (14) yields
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(22)



From (16), (17) and (18), it can be seen that the
control and update laws depend on only e and f.  It is
also seen that calculation of f in (12) requires the
velocity vector. However we can construct a
nonlinear filter to compute f based on e not on its
derivative as follows.

Substituting (17) or (18) into (12) yields
))Atan()Atan(()(Atan)(Atan 22 fekeCfCekfC fff +++−=− !!

(23)
From (29), f can be computed as
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where )(Tan 2ekC +ξ  is calculated as fC in  (15) but f is

replaced by )(Tan 2ek+ξ , and Tan(.) is calculated as
in (11) but atan(.) is replace by tan(.).
We now ready to present out main result.

Theorem 1. The control objective posed in section 2
is solvable by the control law (16) with the control
gain k chosen as in (17) for the case without
environmental disturbances and as in (18) in the
presence of the environmental disturbances.

Proof. We first proof for the case without
environmental disturbances. From (13) we know that
V is a radially unbounded, globally positive definite
function for all )(  and  )(),( tstfte . Since V! in (21)
is negative, we know that ∞∈ LtstfteV ))(),(),(( .
Therefore we have ∞∈ Ltstfte ))(),(),(( . From (2),

(12) and (16) we have ∞∈ Ltstfte ))(),(),(( !!!  as well.
Since dη  and its first two derivatives are bounded,
we conclude that ∞∈ Ltt ))(),(( τη!! . Since the function

)(Atan e is convex in e, we now can apply Barbalat’s
Lemma in (Krstic et al. (1995)) to state that )(te
tends to zero.

For the case with the environmental disturbances, the
proof is similar. Since V!  in (22) is negative when

),1min( 1k
εζ > with

[ ]Tsfe )Atan()Atan(=ζ , using the similar
arguments for the case without the environmental
disturbances, we can state that )(te  tends
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ε  which can be made arbitrarily

small by selecting 1k .

Furthermore, it is not difficult to solve that the
tracking error e(t) exponentially converges to zero for

the case without the environmental disturbances and

to 

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ε  in the presence of the

environmental disturbances.

4. NUMERICAL SIMULATION

This section validates the control law (16) by
simulating them on a monohull ship with the length
of 32 m, mass of kg 10118 3× and other parameters
calculated by using Marintek Ship Motion program
version 3.18
as

.kgm10802,kgs10497,kgs10215

,kgm10636,kg109.177,kg 10120
124

33
1-2
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25
33
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For the simulation, we take:
T

d ttt )]3.0sin(5.0)3.0cos(10)3.0sin(10[=η ,
TTyx ]5.055[)]0(),0()0([ =ψ . Based on (17) and

(18), for the case without the environmental
disturbances, we take 6

2 103×=k , and 1.0=ε ,
6

2 105×=k  for the case with the environmental
disturbances. Simulation results for the case without
the environmental disturbances are plotted in Figure
1. In presence of the environmental disturbances of
random zero mean with magnitude of 6102 × , the
results are drawn in Figure 2. From these figures, it
can be seen that the tracking error converges to zero
or a ball centered at the origin as proven in Theorem
1.

5. CONCLUSIONS

A global output feedback controller has been
developed to force surface ships to track a reference
trajectory under random but bounded environmental
disturbances using only position and heading
measurements for feedback. The requirement of
velocity measurement is removed by constructing
nonlinear dynamic filter to calculate roll, pitch and
yaw velocity. Simulation on a monohull validated
our proposed controller. The effect of actuator
dynamics was assumed to be neglectable. The ship
parameters were assumed to be known. We are
working on relaxing this assumption.

APPENDIX A.

In this appendix, we show that the function V defined

in (13) by proving the following lemma.

Lemma 1. The following function is proper
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That is the followings must be held.

1) 0)0( =xV ; 2) RxxVx ∈∀> ,0)( ;

3) ∞→→∞ )(lim xVxx .

Proof. In order to prove that xV  is a proper function

for all Rx ∈ , we need to show that 1), 2) and 3) are
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 as desired.

Figure 1. Without disturbances: dxx − : solid,

dyy − : dash-dot, dψψ − : dot.

Figure 2. With disturbances: dxx − : solid, dyy − :
dash-dot, dψψ − : dot.
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