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Abstract: MAPREX is a software application for process condition monitoring based on
the Self-Organizing Map (SOM) neural network. It provides advanced monitoring tools in
a highly versatile way, allowing to look for the causes of a system malfunction or the factors
which have an influence in the final product quality in complex systems as a previous stage for
further more specific condition monitoring prototypes. Its main features include capability to
acquire and store data from field sensors, real-time displaying of the signals and their spectra,
real-time feature extraction and displaying, and state trajectory visualization based on SOM,
also in real time. Copyright © 2002 IFAC.
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1. INTRODUCTION

In last years there has been a great effort in the in-
dustry oriented to the application of predictive tech-
niques in maintenance of machinery and processes
–good surveys can be found in (Gertler, 1988; Iser-
mann, 1998; Patton and Lopez-Toribio, 1998; Betta
and Pietrosanto, 2000)–. Supervision techniques have
even gone beyond fault detection and isolation and
aim also to monitor and predict the quality of the
process performance. In many cases quality control
techniques traditionally applied to the final product
are being replaced by continuous quality monitoring
and/or prediction based in on-line measurements of
process variables and parameters by using data mining
and visualization techniques –see e.g. (Whiteley and
Davis, 1993; Alhoniemi et al., 1999)–.

However, still in many cases, state of the art methods
are insufficient to find out what is going on in a pro-
cess. In complex processes –such as rolling mills, nu-
clear plants, etc.– previously unseen types of faults ap-
pear very frequently and require some in situ research
by the technicians or engineers. This requires flexible
and versatile tools, which allow to measure, in situ and
simultaneously, variables in different test points and
give as much information as possible to determine the
problem. However, currently available portable tools
–data loggers, oscilloscopes, spectrum analyzers– are
too limited while, in turn, computer-based sophisti-
cated systems are far from being portable.

This paper presents a portable condition monitoring
system developed as a result of a research project for
a Spanish steel company with powerful monitoring
and intelligent data visualization methods based on
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the Self-Organizing Map. In the following sections
the architecture of the developed system is described
in detail as well as the visualization methods imple-
mented.

2. SYSTEM DESCRIPTION

2.1 Hardware description

MAPREX was initially conceived as a portable tool
for predictive maintenance. The system was imple-
mented in a portable PC which contains a mother-
board with disk units etc. and PCI slots allowing to
use data-acquisition boards, as well as a built-in LCD
display and a keyboard. All this material can be easily
packed in a box of 40 � 35 � 25 cm. The computer
admits up to four data-acquisition boards which can
acquire data simultaneously. There are several models
available from Data Translation Inc., and the election
of the exact model depends on the requirements in
sampling frequency and number of signals. A photo of
the whole system connected to acquire vibration data
from a motor is shown in figure 1.

Fig. 1. The portable system configured to monitor
vibrations of an asynchronous motor

2.2 Software description

The software application has three differentiated mod-
ules:

� Data acquisition module.� Feature extraction module.� SOM module.

Data acquisition module. The data acquisition mod-
ule performs the tasks concerning acquisition, storage
and displaying of data as temporal signals and its cor-
responding spectra obtained by means of Fast Fourier
Transform (FFT). During the signal configuration the
following properties can be changed: name, units and
sensor sensibility. Each one of the acquisition boards
has independent values in the sampling configuration:
sampling frequency fs, and sampling mode (temporal
or spatial-angular). In this module, signals are pre-
sented in two modes: temporal mode, displayed in the
Time Window, and frequency mode, displayed in the
Spectrum Window.

Feature extraction module. The feature extraction
module is useful to visualize the evolution in time of
process features but it is also necessary as input stage
to the SOM module. In this module some parameters
of the STFT (Short-Time Fourier Transform) must be
configured. These parameters are window size L, over-
lapping M, and window type (rectangular, Hanning,
. . . ).

The signals for feature extraction must be chosen from
those configured in the data acquisition module. Two
types of signals are considered: static signals and
dynamic signals.

Static signals are slow-varying signals –typically tem-
peratures, pressures, etc.– whose wave parameters are
not relevant. For this type of signals only their mean
values are used as features.

Dynamic signals are fast-varying signals –typically
vibrations, currents– whose waveforms need to be
considered. For these signals, the energy/rms values
contained at different frequency bands of the signal
can be used as features. MAPREX allows two types
of feature extraction for dynamic signals:

� Fixed-frequency harmonics. The energies con-
tained in fixed-frequency bands are used as fea-
tures by selecting the center frequencies f1 � ����� � fn
and bandwidths Bw1 � ����� � Bwn for each feature.� Variable-frequency harmonics. Many electrical
and mechanical phenomena produce harmon-
ics whose frequencies depend on other known
variables. A typical case are rotating machines,
which usually yield vibration harmonics at in-
teger multiples (1 � � 2 � � ����� ) of the rotation fre-
quency fr. If the rotation frequency of a ma-
chine is available as an analog measurement,



Fig. 2. General scheme of the MAPREX system.

fr, then energies contained in bands around fre-
quencies proportional to it, K1 fr � ����� Km fr can be
tracked and used as features. This can be done
in MAPREX by creating a list in a dialog box
containing, for each feature: a) the measured ana-
log variable fr, to which the feature’s frequency
is related, b) the constant K, which relates the
actual frequency of the feature to the measured
variable, and c) the bandwidth Bw around the
variable center frequency, K fr. This can be done
for any number and type of “mother" frequencies
–i.e. the fr’s– and for any scalar multiples of
them.

Finally, a normalization of the features can be enabled
or not. During acquisition, the evolution along time of
the configured features can be displayed in the Feature
Window. The obtained feature vector can also be used
as input to a Self-Organizing Map previously trained,
as will be seen next.

SOM module. Algorithm. The feature vectors can
reveal characteristic working conditions of the process
in the form of data clusters in the feature space, since
similar feature vectors correspond to similar work-
ing conditions. However, to distinguish many working
conditions in complex processes many variables are
needed. As a high-dimensional feature space cannot
be graphically represented and the relationships be-
tween the process features usually are highly nonlin-

ear, it is required a nonlinear projection method like
the SOM to project feature space on a 2D space so that
the data clusters corresponding to different working
conditions do not overlap. In this manner the evolution
of the process condition can be visualized as a trajec-
tory of the instantaneous feature vector projected in
this 2D space.

The Self-Organizing Map (Kohonen, 1995; Kohonen
et al., 1996), can be defined as a smooth nonlinear
mapping from a high dimensional input space (here,
the space of feature vectors)

� n , onto a low dimen-
sional (typically 2D) rectangular grid (also called vi-
sualization space). The map is defined by a set of
points (codebook vectors) mi in the input space and
a corresponding set of nodes of a rectangular grid gi.
A training algorithm (Kohonen, 1995) arranges the
codebook vectors mi so that they acquire the same
geometry of the input data in a smooth and ordered
fashion –see figure 3–.

For each feature vector x, the SOM projection is
defined so that the projection of x is the 2D node
position gc corresponding to the nearest codebook
vector mc to the actual feature vector x in the input
space.

The SOM module includes training and execution sub-
modules. The training submodule can train a SOM
using a feature data set 	 xk 
 , which has been previ-
ously obtained and stored, using the batch training
algorithm –see (Kohonen, 1995) for details on this
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(a) Codebook vectors mi in the input (feature)
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(b) Regular SOM grid in the output (vi-
sualization) space formed by the nodes
gi.

Fig. 3. SOM mapping. Note the matching of condition-related regions between both spaces.

algorithm–. For SOM training it is necessary to con-
figure the SOM grid dimensions, Ni � N j, the number
of epochs N and the file containing the feature data.
These feature data have been previously produced
by the feature extraction module through an off-line
processing of stored process signal data. The SOM
execution submodule performs the on-line projection
of the instantaneous feature vector on the visualization
space.

SOM module. Planes. The SOM projection algo-
rithm explained above becomes extremely insightful
by representing the so called component planes and
distance matrix.

The i-th component plane (Kohonen et al., 1996) is a
2D image built on the grid by considering each node
(neuron) as a pixel with a color level proportional to
the value of the i-th coordinate of the corresponding
codebook vector. Indeed, if the i-th feature is, say,
a temperature, the i-th component plane represents a
temperature map of the process. The actual tempera-
ture of the process can be assessed just by looking the
color below the actual projected point.

Other useful plane is the distance matrix. In the same
idea as above, the mean distance of each neuron mi
to its topological neighbours in the grid is drawn.
As neurons representing a cluster are very close and
neurons outside a cluster are very sparse, this map
reveals the cluster structure of the process data in
2D, and therefore, it shows up the different process
conditions present in SOM training data.

Both representations can be shown simultaneously
in different windows, each one along with its state
trajectory projection.

SOM module. Residuals. Sometimes, the projection
of the state trajectory with SOM can give mislead-

ing information about the process condition. Actually,
the SOM manifold –the mi’s– adapts to feature data
during its training phase and, during the exploitation
stage, it only provides correct information if projected
data are similar to those of training, i.e., if they corre-
spond to conditions present in the SOM training data.

When a new condition –not present in the training
set– appears in the process, the distance between the
SOM manifold and the actual process feature vector
x increases. The best matching –i.e. the closest– unit
mc is indeed the best approximation of the actual data
x according to the learned SOM model. A quantity
called residual vector (Díaz et al., 2001):

ε � x ��
 x � mc (1)

describes the deviation of the process with respect to
the SOM model componentwise, showing up which
variables deviate from their expected values and in
which sense (by excess or by defect). As this vector
depends also on time, a suitable 2D-image representa-
tion was chosen in which each pixel � i � j � has a color
value proportional to the j-th residual occurring at
time ti. Such image is shown in the Residual Window.

2.3 Using the condition monitoring system

In figure 4, a snapshot of the system is shown monitor-
ing a 4 Kw asynchronous motor with three accelerom-
eters, two Hall-effect current sensors and a PT-100
temperature sensor –the motor appears in the photo
of figure 1–.

Acquiring data. To acquire data from the process,
first, all the signals must be configured specifying
names, units and sensor sensibilities. Then, the sam-
pling frequency can be changed according to the band-
width requirements of the signals. Data storage option



Fig. 4. A snapshot of the system.

and acquisition time must also be selected. With this
minimal configuration the acquisition can be started.
When the acquisition stops, the acquired data can be
saved under any chosen file name and the acquisition
procedure can be repeated. It is also possible to start
acquisition automatically at programmed regular time
intervals.

While MAPREX is acquiring (being the data storage
option enabled or not) one can take a look at the Time
and Spectrum Windows to observe the behavior of the
process. The Feature Window is also available if the
feature extraction is previously configured, with the
spectral features selected as explained above. All these
windows can help to select the feature set for a further
analysis with SOM and residuals.

Feature extraction and SOM training. To obtain in-
put data for SOM training, the feature extraction must
be configured using the above procedure. Then, the
system asks for process data files –previously acquired
and stored–. Data sets should contain as many distinct
working conditions of the process as possible. When
the feature extraction is finished the feature extraction

data can be saved in a file and it can be selected in
the SOM training configuration. In addition, the SOM
parameters (grid dimensions, training epochs) have to
be specified. After SOM training, SOM data are saved.

Exploiting the SOM. Once a trained SOM is avail-
able, all kind of SOM windows can be opened: Com-
ponent Planes, Distance Matrix, and Residual Win-
dow. If the acquisition has been started, the instanta-
neous projection of the feature vector is shown in each
SOM window with a pointer.

The next analysis stage is to identify the process con-
ditions corresponding to each region in the visual-
ization space and to label them. A label placed in
any SOM window (the Distance-Matrix Window, for
instance) will appear also in the rest of the SOM
windows (i.e., in all the Component Planes). Three
possibilities are available to carry out this labelling:

� Labelled process data (separate data files each
one belonging only to a known process condi-
tion) can be used to generate activation maps,
which show the regions in SOM visualization



space corresponding to each file, i.e., to each
known process condition. These controlled sam-
ples show where the labels must be placed and
which are the labels to place.� As mentioned in the section of the SOM mod-
ule, the distance matrix is useful to distinguish
regions corresponding to different conditions. It
shows region boundaries and, therefore, it helps
to place labels, but it gives no indication of which
are the labels to place.� The component planes can be used to estimate
the value of process features, and therefore pro-
cess variables, in each point of the SOM visual-
ization space and hence being able to infer the
process condition from them by applying expert
knowledge about the process. They can be used
in combination with distance matrix to know
which and where the labels must be placed.

While the residuals are zero (green in Residual Win-
dow) the state indicated by the pointer is valid: the
estimated values of the features in Component Planes
and the cluster/condition pointed out by Distance Ma-
trix are correct. However, it should be noted that, when
at least one of the residuals deviates from zero, the
information provided by the pointer only corresponds
to the most similar condition present in the training
data. Indeed, this means that the current process con-
dition was not present in the SOM training data. If no
conditions different from those of the training set are
expected in the process, this can reveal the presence
of incipient faulty states and the components of the
residual vector can give an indication about the nature
and origin of the new situation. At this point the user
can choose to incorporate the new process data into the
training set, and re-train the SOM, which will account
for the new condition in subsequent executions.

3. CONCLUSION AND FUTURE WORK

MAPREX is a highly versatile portable system that
represents an alternative to most of the commercial
portable condition monitoring systems, which are typ-
ically meant for data logging, FFT monitoring and
alarm threshold setting, and in most cases only allow
a reduced number of signals to be analyzed simultane-
ously.

The system allows the technical staff to configure in
situ the whole setup (measurement selection, feature
extraction stage, etc.) according to the actual condi-
tions of the plant and the production requirements. It
can also be used just there where it is needed –in the
same fashion as an oscilloscope– depending on the
requirements of the plant maintenance, thus avoiding
the need of installing many fixed CM systems. Other
advantages can be outlined:

� High level of portability (can be carried with one
hand).

� Can analyze a great number of signals simulta-
neously (up to 64 signals).� On-line time or spectral representation of signals
(live plots).� Spectral feature extraction (track the spectral
power content of any signal at configurable fre-
quency bands).� Learning ability. Spectral or time features of the
process can be learned by a Self-Organizing Map
(SOM).� Graphical process visualization by SOM projec-
tion.� Residual analysis. The difference between the
learned model and the actual process features are
highlighted graphically by means of the residu-
als.

Future steps will aim to improve its performance by al-
lowing to use prior knowledge about the process. Cur-
rently, a fuzzy inference system is being implemented
to aid in region identification and direct analysis of the
features using fuzzy rules, which has yielded encour-
aging results in previous analysis and simulations.
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