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Abstract: In this paper, an aircraft landing autopilot is designed using the nonlinear energy-

based control method (NEM). This method provides the automatic landing by energy manage-

ment idea. Using the NEM the stabilization and tracking can be achieved by modifying the

energy functions. The method is illustrated on an automatic landing system problem for a twin-

engine civil aircraft, developed by Group for Aeronautical Research and Technology in Europe

(GARTEUR). Further we provide physical interpretation of the control laws. A disturbance

rejection and robustness analysis is also performed via numbers of simulations at extreme flight

conditions. The proposed control laws behave well even under extreme flight conditions.

Keywords: Energy management systems, aerospace control, Lyapunov stability, stability

robustness, tracking, nonlinear control system.

1. INTRODUCTION

The NEM for aircraft control is first introduced in (R. Ak-

meliawati and I. Mareels, 1999). The method is extended

using ideas from singular perturbation theory to deal with

the separation of the aircraft short-period and phugoid

dynamics in (R. Akmeliawati, 2001). We present the result

in this paper. The controller is illustrated on a landing

autopilot of a research civil aircraft model (RCAM), devel-
oped by GARTEUR. The closed-loop responses are better.

In this paper we present the physical insights of the

NEM controller for the RCAM landing autopilot. We also

provide a disturbance rejection and robustness analysis
for the controller based on numbers of simulations at

’extreme’ flight conditions (defined by aircraft mass and

centre of gravity (COG) position) and simulations with

model error. (A different robustness analysis for the NEM

controller via Monte Carlo simulations can be found in

1 This work was done while the first author was a PhD
student at the University of Melbourne.
2 Author for correspondence.

(R. Akmeliawati and Mareels, 2001).) For this purpose
we only provide sufficient details of the controller design
process. For further details please refer to (R. Akmeliawati,
2001).

The idea of the NEM is to provide stabilization and
tracking by modifying the energy of the system to be
controlled. The method is akin to the passivity based-
control (PBC) as discussed in (R. Ortega and et. al., 1998).
The method consists of two phases, the energy modification
phase and the damping injection phase. In the energy
modification phase the controller modifies the energy of the
system to achieve the control objective(s). The injection
of damping into the system is to ensure passivity so
that asymptotic stabilization is achieved. The stability (in
Lyapunov sense) and performance robustness of the closed-
loop system are thus guaranteed.

In our autopilot design we only treat the aircraft longi-
tudinal dynamics. We exploit the inherent time scales of
the aircraft (longitudinal) dynamics to achieve a simpler
overall design. This is approached by using a singular
perturbation technique. Additional integral actions are
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Table 1. Flight trajectory descriptions

Seg. Time,t (sec) Descriptions γ (deg) Va (m/s)
I 0 < t ≤ 110 Level flight 0 80
II 110 < t ≤ 150 Descending -5 80
III 150 < t ≤ 190 Diving -5 80
IV 190 < t ≤ 230 Ascending 5 80
V 230 < t ≤ 260 Climbing 5 80
VI 260 < t ≤ 300 Leveling 0 80
VII 300 < t ≤ 340 Level flight 0 80
VIII 340 < t ≤ 380 Descending -6 80
IX 380 < t ≤ 420 Diving -6 80
X 420 < t ≤ 450 Descending -3 80
XI 450 < t ≤ 500 Approaching -3 80

provided to ensure tracking in the presence of model/plant

errors.

This paper is organized as follows. Section 2 provides the

design process of the NEM landing autopilot. In Section

3 we provide the physical insights of the resulting con-

troller. In Section 4 a disturbance rejection and robustness

properties of the control laws are presented via a series of

simulations. Section 5 concludes.

2. NONLINEAR ENERGY-BASED CONTROL

METHOD

In designing our landing autopilot we have the following
control objectives:

• To provide automatic pitch (and pitch rate) stabi-
lization during the landing phase.

• To achieve automatic tracking of a given flight tra-
jectory.

The controller design can be divided into four stages.

• Energy-based modeling of aircraft dynamics

In this stage we describe the aircraft (longitudinal)
dynamics using the Euler-Lagrange (EL) formalism.

Actuators and sensors are not considered in the
control design process. The aircraft model used is

the RCAM.

• Derivation of control laws

The control laws are developed based on the passivity
principle, Lyapunov stability ideas and the time-scale

separation.
• Tuning

In this stage we tune a number of control gains such

that the closed-loop system responses satisfy all the

design criteria.

• Disturbance rejection and robustness analysis

In this stage we perform a number of simulations

at extreme flight conditions and with model error to
provide useful information on the controller robust-

ness against parameter variations (aircraft mass and

COG position), dynamical disturbances such as the
wind gust and windshear as well as the model error.

In the design process, we adopt the design criteria specified
in (R. Akmeliawati, 2001).

2.1 Flight trajectory

The flight trajectory consists of eleven segments as de-

scribed in Table 1 and Figure 1.
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Fig. 1. The flight trajectory

2.2 Aircraft dynamics

Longitudinal dynamics consists of the translational dy-

namics (considered as the slow dynamics) and the rota-

tional dynamics (considered as the fast dynamics). Three

external forces are concerned; gravitational forces, propul-

sion force and forces due to the aerodynamics.

To simplify our notations we introduce the EL parameter

as a triplet Σ = {T ,V,F}, where T ,V and F are the

kinetic and the potential energy and the Rayleigh function,

which provides the dissipation.

The equations of motion are then derived from Σ using the
EL equation:

d

dt

(
∂L
∂q̇

)

− ∂L
∂q

= −∂F
∂q̇

+Duu, (1)

where q = [ θ x z ]T ∈ R3 is the generalized coordinates,

L = T (q, q̇) − V(q) is the Lagrangian. θ, x, z define the
pitch angle, the x and the z position of the aircraft COG

in the inertial axes, respectively. The input is denoted as
u, u = [ δe δth ]T ∈ R2, where δe is the elevator and δth is
the throttle angle .

The fast and the slow dynamics are treated separately

here for good handling qualities (D. Mclean, 1990) as the
natural frequency (in closed-loop) of the former, ωsp is
about 10 times that of the latter, ωph. Thus, we preserve
it in the closed-loop dynamics.

Fast dynamics

The fast dynamics are defined by Σf = {Tf ,Vf ,F} =

{ 1
2
θ̇Iy θ̇, 0,F}. The generalized coordinate is θ. Thus, using

(1) the fast motion is described by:

Iy θ̈ +
∂F
∂θ̇

= Dfu, (2)

where Df = [ Dθ,δe Dθ,δth ] and Iy is the inertia constant.

Slow dynamics

The slow dynamics are defined by

Σs = {Ts,Vs,Fs} = {
1

2
q̇Ts Msq̇s, qs

TCs,F} (3)

where qs = [ x z ]T , Ms > 0,Ms = diag(m,m), Cs =

[ 0 mg ]T . m and g are the aircraft mass and the gravita-

tional constant (=9.81kg/s2).

Using (1), the equations of motion of the slow dynamics
are:

Msq̈o + Cs +
∂F
∂q̇s

= Dsu (4)

where ∂F
∂q̇s

= [
∂F
∂ẋ

∂F
∂ż

]T , and Ds =

[ Dx,δe Dx,δthDz,δe Dz,δth

]

,

Ds is invertible.



For RCAM at COG x-position, xCOG = 0.23c̄ and z-
position, zCOG = 0 (c̄ is the mean aerodynamic chord),

∂F
∂ẋ

= 25.47ẋV + 337.21ẋV α2 + 80.20ẋV α

+ 967.02żV α+ 169.70żV + 3917.80żθ̇, (5)

∂F
∂ż

= −967.02ẋV α− 169.70ẋV − 3917.80ẋθ̇

+ 25.47żV + 337.21żV α2 + 80.20żV α, (6)

∂F
∂θ̇

= 1539.73V 2α+ 345.69V 2 + 94317.23V θ̇

− 244.82V 2α3 − 58.22V 2α2, (7)

Dx,δe = −121.52żV, Dx,δth = 19.62m cos(θ),

Dz,δe = 121.52ẋV, Dz,δth = 19.62m sin(θ),

Dθ,δe = −2925.47(ẋ2 + ż2), Dθ,δth = 37.278m,

where V =
√
ẋ2 + ż2 and α = θ− γ. The flight-path angle

is γ = tan−1 ż
ẋ
.

From which we define V̇ as

V̇ = −g sin(γ)− 1

m
[25.47V 2 + 337.21V 2α2

+80.20V 2α] + 19.62 cos(α)δth. (8)

Remark 1. It is reasonable to expect that the Rayleigh
term be dissipative, i.e. it should satisfy

q̇T
∂F
∂q̇

≥ 0.

As far as we could ascertain, the approximate model for the

RCAM almost posses this property over the entire flight en-
velope, However, it does not satisfy this property over the

entire flight envelope. In our NEM design we hypothesize
that this property actually holds (although admittedly the
model we use for control design and simulations does not).

We assume that all states of the dynamics are measurable.
The position coordinates x and z are governed by the

slowest dynamics.

2.3 Controller design

The fundamental idea of NEM is to modify the system’s

energy such that satisfies the energy balance equation,

Hp(t)−Hp(0)
︸ ︷︷ ︸

stored energy

+ HD
︸︷︷︸

Energy dissipated

= HS
︸︷︷︸

supplied energy

The aircraft energy (required and dissipated) in order

to achieve the desired trajectory consists of the stored

and the dissipated energy. An NEM controller is aimed to
modify the energy distribution via aircraft control surfaces

and thrust to achieve the desired objective(s). In essence,
the design process of an NEM controller is divided into

three time scales, a fast loop stabilizing the pitch angle
(inner-loop control), a medium loop ensuring damping and

stability exploiting energy principles (energy loop control)

and a slow outer loop using integral actions to enforce

trajectory tracking (PID loop).

Proposition 1. The NEM controller to achieve trajectory

tracking, energy regulation and pitch stabilization for the

RCAM landing autopilot is

δe =
1

Mθ,δe

[

Iy θ̈d +
∂F
∂θ̇

− (Iyζ +Kd)
˙̃
θ −Kdζθ̃

−Dθ,δthδth
]
+K1

˙̃x+K2
˙̃z +K3x̃+K4z̃

+K5 tanh(0.1

∫

x̃) +K6 tanh(0.1

∫

z̃), (9)

δth =
1

19.62 cos(α)

[
D

m
+ g sin(γ) + V̇d −Kdsζ0Ṽ

]

−K7θ̃ −K8
˙̃
θ +K11

˙̃x+K12
˙̃z +K13x̃+K14z̃

+K9 tanh(0.1

∫

x̃) +K10 tanh(0.1

∫

z̃), (10)

where K1,K2,K3,K4,K5,K6,K9,K10,K11,K12, K13,

K14 ∈ R. Kd = mζk, ζk > 0, Kdsζ
2
0ζk−( 1

2
19.62ζ0K8)2 ≥

0, and K7 ≤ K8ζ. Kd = mζk, ζk > 0, Kdsζ
2
0ζk −

( 1
2
19.62ζ0K8)2 ≥ 0, and K7 ≤ K8ζ. D = 25.47V 2 +

337.2V 2α2 + 80.20V 2α. ζ,Kd, K7,K8 ∈ R
+ and (̃.) =

(.)measured − (.)desired.

Remark 2. Dθ,δe is invertible as V > 0, ∀t > 0.

Analysis

The complete controller consists of three components, the

inner loop (uil) and the energy loop (uel) controllers which
are combined into a composite controller uc, and the PID
components uPID.

u = uc + uPID, (11)

uc = uil + uel, (12)

where uil = [ δeil δthil ], uel = [ δeel δthel ] and uPID =

[ δePID
δthPID ].

The PID component is added as an outer loop to remove
the tracking error in x- and z- positions. The composite
controller is the energy-based controller designed to achieve

(speed and flight path) tracking and pitch stabilization.

Composite controller
The (composite) energy-based controller to achieve track-

ing and pitch stabilization is:

δec =
1

Mθ,δe

[

Iy θ̈d +
∂F
∂θ̇

− (Iyζ +Kd)
˙̃
θ

−Kdζθ̃ −Dθ,δthδthc
]
, (13)

δthc =
1

19.62 cos(α)

[
D

m
+ g sin(γ) + V̇d −Kdsζ0Ṽ

]

−K7θ̃ −K8
˙̃
θ. (14)

Motivation: Define the closed-loop system with (2),

(4), (5), (6), (7), (13) and (14). Consider a composite

comparison function:

H =
1

2
me2el +

1

2
Iye

2
il. (15)

The derivative of H along the solution of the closed-loop

system:

dH

dt
= −Kd(

˙̃
θ + ζθ̃)2 −mKds(ζ0Ṽ )2

−19.62m cos(α)ζ0Ṽ (K7θ̃ +K8
˙̃
θ)

≤ (−ζk(
˙̃
θ + ζθ̃)2 −Kdsζ

2
0 Ṽ − 19.62ζ0K8(

˙̃
θ + ζθ̃)Ṽ )m

≤ (−ζk(
˙̃
θ + ζθ̃)2 −Kdsζ

2
0 Ṽ

2)m, (16)



We achieve pitch stabilization and energy regulation.

The inner-loop control law is derived as follows. The inner-

loop control stabilizes the rotational motion, which is

characterized by pitch (and the pitch rate), θ (and θ̇). Let

eil =
˙̃
θ + ζθ̃ and

Ψil = Iy ėil +Kdeil, (17)

where Kd governs the time constant for the pitch stabi-

lization. Ψil defines the error dynamics of the rotational

dynamics. In the inner loop (i.e the fast time scale), the

control commands are defined via uil : {u|Ψil = 0}, such
that the ’desired energy function’ Hil ≥ 0 and Ḣil ≤ 0.

The chosen energy function is Hil = 1/2Iye2il. The inner-

loop control law is:

δeil =
1

Dθ,δe

[

Iy θ̈d +
∂F
∂θ̇

− (Iyζ +Kd)
˙̃
θ

−Kdζθ̃ −Dθ,δthδthil
]
, (18)

δthil = −K7θ̃ −K8
˙̃
θ. (19)

The energy-loop controller is derived as follows. Assume

θ = θd, and θ̇ = θ̇d. Let eel = ζ0Ṽ and

Ψel = ėel +Kdseel, (20)

where the constant Kds > 0 governs the time constant
for the regulation of the speed error. Ψel defines the
tracking error dynamics of the translational dynamics. In
the energy loop (i.e the medium time scale) the throttle

command is defined via uel : {u|Ψel = 0}, such that the
desired energy function for the energy loop, in our case is

Hdel
= 1

2
me2

el
≥ 0 and Ḣdel

≤ 0. The energy-loop control
commands:

δeel = 0, (21)

δthel =
1

19.62 cos(α)

[
D

m
+ g sin(γ) + V̇d −Kdsζ0Ṽ

]

.

(22)

The control law (22) is well defined as − π
6

< α < π
6
and

thus, cos(α) ≥ 1
2
, ∀ t. ♦

Tuning

The controller gains K1, ..., K14,Kds,Kd, ζ, ζ0 determine

the overall performance of the controller and need to be

properly tuned. Our gain selection was guided through a

pole-placement analysis of the linearized system around
the nominal operating point taking into account the

constraints ζ0Kds, ζ,Kd > 0 and K7 ≤ K8ζ,Kd =
mζk, (ζk > 0), and Kdsζ

2
0ζk − ( 1

2
19.62ζ0K8)2 ≥ 0.

K1, ...K6,K9, ..., K14 are selected to be significantly smaller
than K7,K8, Iyζ + Kd, Kdζ,Kdsζ0 to ensure the time

scale separation between the inner energy loop and pitch

stabilization and tracking commands.

3. PHYSICAL INSIGHTS

The physical meaning of the resulting control laws (9) and

(10) can be understood as the following.

The energy loop control provides control to the energy level

of the aircraft dynamics. This proceeds as follows. Consider

(20), substituting (8), we obtain

Ψs = g′(
Ės

V
− sin(γ)− V̇d

g
) +Kdses, (23)

where g′ = gζ0,
Ės

V
= T−D

mg
is the specific energy rate.

From (23), the thrust provides the aircraft energy control

by ’supplying’ energy equals to the desired specific energy

rate (defined by sin(γ) and
V̇d
g

terms) and the drag that

has to be encountered. The term outside the brackets is

to ensure the removal of tracking error (in speed). The
elevator control provides the pitch (and the pitch rate)

control and energy distribution. This concept is similar to

the Total Energy Control System (TECS), developed by

Boeing and NASA in the 1980’s (A. A. Lambregts, April

1999). The NEM control laws provide information on the

energy level. If the correct energy level is achieved, it is

then distributed to the speed or the flight-path depending

on the task. The energy distribution is provided by the

term ( 1
Dθ,δe

(−Dθ,δthδth)). This is true as the energy

distribution rate is defined as L̇ = V̇
g
− γ and δth is a

function of V̇
g

and γ.

In the inner-loop control, the throttle control action in

δthil does not in any way affect the pitch stabilization as it
is compensated in the elevator command. Nevertheless, a

control action of this nature is shown to be beneficial dur-

ing transients. As the slow throttle command is essentially

based on the desired (ultimate) pitch angle, this transient
throttle command can compensate for a deficiency or over-
supply in thrust due to the difference between actual and
desired pitch angle. This is precisely the role of the inner-
loop throttle action δthil .

The combination of the pitch controller with the energy

loop control works independently of the assumption of the
time scale separation. The composite controller (13) and
(14) achieves regulation of pitch and velocity independent
of such assumption. Nevertheless, the time scale separation
between the pitch stabilization and the energy stabilization

loops can be maintained by this control design as reflected
by the particular gain selection in the controller.

Based on (9) and (10) the potential energy tracking is
achieved through tracking of zd, which is in the slowest

time scale. This is accomplished by the integrators in the
controller.

The integral actions are tempered by a hyperbolic-tanget

function in order to negate the effect of unwanted integral

action due to large set points errors or large disturbances.

On a global dynamics level, the kinetic and the potential

energy and the pitch motion are regulated as desired. The

nonlinear inner control loop ensures this in spite of the

additional PID terms, which are there to regulate the

position variables. This is indicated by the difference in
time scale on which these control actions contribute to

the control effort. The latter is clear from the significant
difference in the gain magnitude between the pitch and

the energy loop on the one hand and the PID loop on the

other.

Another argument to this effect is to directly exploit the

difference in gain size between the energy loop and the

PID signals, indicating that the energy is regulated at

worst with a small residual error, proportional to the

ratio of energy gains and PID gains (the gains differ

by four orders of magnitude in our design). Further, in
the neighborhood of the desired trajectory, the controller

gains are such that we have exponential stability (locally)

through a pole-placement selection of the gains. This

is correct regardless of the particular trajectory in the
flight envelope (again) due to the nonlinear nature of the

energy and the pitch stabilization control laws. Thus, for



gross errors, the nonlinear energy and the pitch control
commands act first providing an approximate stabilization

and regulation of the pitch and the speed. In the longer

time scale and for the small remaining errors the PID

control actions guarantee good performance.

Finally, observe that by construction the closed loop sys-

tem is designed to follow parabolic trajectories without

tracking error. This accommodates most flight paths.

4. DISTURBANCE REJECTION AND ROBUSTNESS

ANALYSIS

In this section we provide a robustness analysis based on

a number of simulations in the presence of model error

and at extreme operating conditions, characterized by the

mass and COG position (specific to the RCAM). During

all simulations medium level of turbulence and windshear

(see (J. Magni, 1997) for the wind model) was applied. The

analysis is aimed to verify robustness of our closed-loop

system and to investigate the conformity of the responses

with the design criteria despite the disturbances. Four

parameters, the altitude (z), the airspeed (V ), the pitch

angle (θ) and the flight path angle (γ) are used as the

main parameters for the evaluation of performance criteria.

The angle of attack and the vertical load factor is used to
evaluate the ride quality (RQ) and the safety criteria.

4.1 Simulations at extreme flight conditions

In this study we investigate the closed loop responses
at nine operating points with extreme mass and COG
positions specific to RCAM (one simulation includes 10%
error in the aircraft initial energy). Operating condition

1 to 9 represent the operating conditions at the limit of
the allowable mass and COG positions. These operating

conditions are considered as ’bad’ operating points which
can cause undesirable performance and lead to instability

in the aircraft responses (such as, operating point 8:
m=150, 000 kg, xCOG = 0.15c̄ and zCOG = 0.21c̄)

(L. F. Faleiro, November 1998). The range of the allowable
mass is 100, 000 kg − 150, 000 kg. This constitutes 33% −
60% error in the total kinetic and potential energy during

the entire flight. Such large error in mass also affects the

inertia constant, therefore, affects the pitching moment.
The range of the allowable COG position: 0.15c̄−0.31c̄ for
xCOG and 0 − 0.21c̄ for zCOG. The COG position affects

the pitching moment. Thus, it affects the kinetic energy of

the rotational motion. Please refer to (J. Magni, 1997) and

(R. Akmeliawati, 2001) for detailed descriptions of each

operating point.

The results are summarized in Table 2. Figure 5 shows

the RMSE of airspeed responses at ’extreme’ conditions.

Detailed quantitative analysis of the result can be found
in (R. Akmeliawati, 2001). In Table 2,

√
indicates that

all specifications are satisfied. The root mean square error
of the responses are indicated by eRMS . Subscript fin

indicates the response during the landing final phase only.

SS and WS indicate the responses during steady-state and

windshear, respectively.

The table shows that the ride quality and the safety criteria

(which are evaluated based on the angle of attack and the

vertical load responses) are well satisfied.

The altitude criteria during the final landing phase is only

satisfied by operating condition 5 and 6. The flight path

angle criteria during the final landing phase are satisfied

by all operating condition except operating condition 5 and
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6. Both violations are expected as the error in the aircraft
total energy is very large. To achieve the correct speed

during the final phase of landing, the controller sacrifices
the altitude to compensate extremely large error in the
aircraft energy. Please note that although the altitude
criteria and/or the flight path angle criteria cannot be
satisfied at those operating conditions, the responses of
other aircraft parameters such as airspeed, pitch angle and

angle of attack responses are satisfactory.

The RMS error of the altitude criteria during steady state

cannot be satisfied by operating point 1, 7 and 8. At those
operating conditions, the difference between the nominal

mass and the actual mass, and the nominal COG position
and the actual COG position are maximum. Thus, we

would expect the eRMS criteria for zfin cannot be met.

The aircraft responses during windshear (and wind gust)

are well within the design criteria except for operating
condition 7 and 8. Operating condition 7 and 8 are not be

able to meet the criteria for the same reason mentioned

earlier. Overall, the result indicates that the controller

is able to provide satisfactory performance and stability

robustness to the aircraft despite large error in the mass
and COG position and wind disturbances.

In this paper we analyse the closed-loop responses of
operating point 8 (as the worst operating condition) in

more details. The position and the airspeed responses of
the aircraft at operating condition 8 are shown in Figure

2 and Figure 3, respectively. Figure 2 also indicates the

error in the altitude response and the maximum allowable

altitude-deviation. Although the altitude response does

not satisfy the altitude criteria, the responses of other
aircraft parameters well satisfy ride quality, safety criteria

and other performance criteria. This is achieved with a
reasonable amount of control actions (Figure 4). Figure

3 also shows that the controller is able to maintain the

airspeed response within the design criteria. This indicates

the excellence capability of the controller in handling

extreme flight conditions such as operating condition 8.

Overall, we can see from the table that the closed-loop
system satisfies the ride quality and the safety criteria and

most of the performance criteria.
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Table 2. Simulations at extreme condition

Op. Performance criteria RQ Safety
point SS WS criteria criteria
1 eRMS z ,zfin

√ √ √
2 zfin

√ √ √
3 zfin

√ √ √
4 zfin

√ √ √
5 γfin

√ √ √
6 zfin,γfin

√ √ √
7 eRMS z ,zfin eRMS z

√ √
8 eRMS z ,zfin eRMS z

√ √
9 zfin

√ √ √

4.2 Simulations with model error

In this study we investigate the effect of model error on
closed loop responses. The model error is presented by

±2% error in aircraft forces (Fx and Fz) and pitching
moment. Nine simulations were performed. The aircraft
mass and COG position are fixed at the nominal values,
except at operating condition 9 where the mass and the
COG position are varied with time . The results are shown
in Table 3. Figure 6 shows the RMSE of airspeed responses
with model error scenario. Detailed quantitative analysis

of the result can be found in (R. Akmeliawati, 2001). All
requirement are well satisfied except at operating condition

9, the altitude criteria at steady state cannot be met. This
is expected as at this operating condition the error in the

Fx, Fz and pitching moment are all 2%. Besides, as the
mass and the COG position are varied with time this will
need to be compensated to achieve correct speed and as the
result the altitude criteria cannot be met. The responses

during the windshear (and wind gust) are satisfactory. This
indicates the excellence performance of the controller.

5. CONCLUSION

We have discussed the physical interpretation of the NEM

landing autopilot. The control laws provide control in a

natural way by using the energy management idea. The

design process is systematic and relatively simple. The
disturbance rejection and robustness analysis based on

numbers of simulations at extreme flight conditions with
model error and wind disturbances indicates that the

closed loop system is able to cope various flight conditions

satisfactorily. The stability and performance robustness

is guaranteed. The control objectives are achieved with

acceptable levels of control activities and good stability

and performance.
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