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Abstract: This paper describes the application of predictive control to the temperature
regulation in agricultural processes. The main aim is to achieve climatic control of a
greenhouse built in the Institute for Horticultural and Agricultural Engineering (ITG) of
the University of Hannover (Germany). The MPC controller implemented here has the
characteristic to take in account constraints in both manipulated and controlled variables
using on-line linearisation, with very low computational burden. By means of a real time
experiment, important advantages of the MPC algorithm are demonstrated, performance and
mainly saving energy, using a soft optimal control effort. This controller has been compared
with an adaptive PID controller. Copyright c�2000 IFAC
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1. INTRODUCTION

Agriculture under greenhouses has a growing eco-
nomic and social importance in the European coun-
tries, for that reason climate computer has become
very common in a large part of these countries. The
actual climate computers mainly resolve the task of
greenhouse climate control, i.e. inside temperature,
relative humidity and CO� level. The manipulated
variables are the temperature of the heating system,
the windows opening, and the CO� supply. In some
cases, the irrigation control is included. Many of these
systems use a conventional PID control for each con-
trol loop, but this control strategy has important dis-

advantages: (a) the performance is very low, due to
the interactions between the different variables, (b) the
constraints are not considered and (c) no guarantees of
preservation of the used energy. The main objective of
this work is to implement a real time model predictive
controller able to solve these problems, and to com-
pare it with a conventional PID controller with respect
to energy saving, economical issues and transparency.

A greenhouse is a closed enclosure that creates a dif-
ference between the outside and the inside air, due to
the confinement of the air, and to the absorption of the
short wave solar radiation by the double glass cover.
In addition the long wave radiation is interchanged
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between the different components of the greenhouse
(ground, heating system, plants, cover, etc.).

Fig. 1. Greenhouse system

The dynamic behaviour within the greenhouse is gov-
erned by the energy and mass balances. The energy
balance is affected by the energy contribution by the
heating system, the energy loses caused by the air
exchange by transmission through the cover and the
natural ventilation by means of the windows, and fi-
nally the energy contribution by the solar radiation
(Bot, 1983).

The humidity balance is determined by the plants tran-
spiration, and the air exchange due to the ventilation,
finally the carbon dioxide balance is determined by the
CO� supply, the plants consumption of CO�, and the
air exchange by ventilation.

Model Predictive Control (MPC) appears as a suitable
control strategy to cope with the problems of control-
ling the climate and the growth processes. On the one
hand, MPC can provide with high performance when
models are accurate and, on the other hand, MPC is
one of the very few strategies which guarantee the
accomplishment of constraint specifications.

The main objective of this paper is to apply the tech-
niques of the MPC in order to control the greenhouse
temperature with two manipulated variables: heating
and natural ventilation (windows opening). The green-
house climatic control problem is tackled with an
MPC algorithm which uses on-line linearised mod-
els (Oliveira and Morari, 1995; El Ghoumari, 1998;
Megas et al., 1999).

2. GREENHOUSE CLIMATE VALIDATION
MODEL

In the greenhouse climate model used here, the state
of greenhouse climate is represented by tree variables
namely, inside air temperature Tg [C], carbon dioxide
concentration Ci [Kg m�], and absolute humidity Vi

[Kg m�]. Plant model was ignored for simplicity rea-
sons.

The greenhouse climate model describes the dynamic
behaviour of the state variables with the following
differential equations (Henten, 1994; Tap, 2000):

dTg

dt
�

�

ccap�q
�Qpi�ai �Qai�ou �Qrad �Qsoil�

Vg
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dCi

dt
� �v�C� � Ci� � �inj �R� �P (1)
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�

�
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where ccap�q [J m�� C��], ccap�c [m], ccap�h [m] are
the heat and mass capacities of the greenhouse air
respectively. In this model, the heat and mass transfer
in the greenhouse are described per square metre soil.

The convective energy transport from the heating
pipes to the greenhouse is described by:

Qpi�ai � cpi�ai�Tp � Tg�

were:

cpi�ai is the pipe air heat transfer coefficient [W m��

C��]
Tp is the heating pipe temperature [C](Manipulated

variable)
Tg is the inside temperature [C](Controlled vari-

able)

The energy loss to the outside air can be described by:

Qai�ou � ��ventccap�q�v � cai�ou��Tg � Tout�

were:

�vent is the natural ventilation flux [m s��]
ccap�q�v is the heat capacity per volume [J m��C��]
cai�ou is the heat transfer coefficient through the

greenhouse cover [W m�� C��]

The natural ventilation flux is calculated from the
wind speed and the windows opening (de Jong, 1994;
Baytorun, 1986).

�vent � �� �w � �wrw

were:

� is the ventilation rate parameter [m s��]
� is the ventilation rate parameter [-]
w is the outside wind speed [m s��]
� is the ventilation rate parameter [-]
rw is the relative windows opening [%](Manipul-

ated variable)

The heat load from the sun is given by:

Qrad � CradG

were:

Crad is the radiation conversion factor [-]
G is the outside solar radiation [Wm��]

Finally the heat load from the soil is given by:

Qsoil � ks�Ts � Tg�

were:

ks is the soil heat transfer coefficient [W C�� m�]
Ts is the soil temperature [C]



The greenhouse air CO� concentration is described
by the second line in the eqn.1 where Vg

Ag

is the
average greenhouse height [m], C� is the outside CO�

concentration [g m��], �inj is the CO� injection
flux (Manipulated variable) [g s�� m��], R is the
respiration of the crop [g s�� m��], P is the crop
photosynthesis [g s�� m��] and � is the fraction
of molar weight of CO� and CH�O [-]. (These two
last terms are neglected because no plants have been
considered in this model).

Finally the greenhouse air vapour contents is de-
scribed by the last line of eqn.1 where: �h�pi�ai is the
canopy transpiration rate [kg m�� s��], and �h�ai�ou is
the humidity losses to outside air due to the ventilation
[kg m�� s��].

Three calibration parameters are chosen, and they
have been identified using a Sequential Quadratic Pro-
gramming (SQP) method, minimising the error be-
tween the measured and calculated data during ��
days, subject to the constraints of the limits of cal-
ibration parameters which can be found in the lit-
erature (Baytorun, 1986). These parameters are the
heat capacity of greenhouse air ccap�q, the heat trans-
fer coefficient cpi�ai, and the energy transfer through
greenhouse cover cai�ou. The optimal values of these
parameters are as follows:

ccap�q � �				[J m��C��] �
cpi�ai � 
[W m�� C��] �
cai�ou � �	[W m�� C��] �

3. MPC ALGORITHM DESCRIPTION

In this paper, the climatic variables in the green-
house are controlled using the Modified Extended Lin-
earised Predictive Controller(MELPC) described in
(El Ghoumari, 1998; Megas et al., 1999). The MELPC
is aimed to control non-linear MIMO systems with
a low computational burden. This algorithm exploits
the idea of obtaining on-line linearised models at
each sampling instant, an alternative which has been
shown to improve the performance achieved using a
single (off-line) linear approximation of the process.
A similar approach can be found in (Oliveira and
Morari, 1995) and in (De Keyser, 1998), which for-
malises the idea of on-line linearisation by means of
an iterative formulation.

The complexity of the greenhouse system, the large
interaction between different variables, and the strong
external disturbances stand out among the reasons
for choosing MELPC. In addition, the controller is
expected not only to control the climatic variables, but
also to satisfy constraints in the manipulated variables
(heating and opening of the windows). Because of
this, the controller is formulated so as to take hard
input constraintsinto account.

The MELPC works as follows. Let the process be
described by the following autonomous non-linear
ODE system: �

�x � f�x�u��

y � g�x��
(2)

with n states (x), m inputs (u) and p outputs (y). In
addition, let the incremental variable v be defined as
v

�
� u � u�ts � ��, where ts denotes the current

sampling instant. A vector of output predictions is
given by

Y �

�
����

yf �ts �N�� � yu�ts �N��

yf �ts �N� � �� � yu�ts �N� � ��
...

yf �ts �N�� � yu�ts �N��

�
���� �

where yf �ts�j� are the free responses(computed tak-
ing the future control moves to be zero) and y u�t� j�
are the forced responses, which depend on�v�ts�j�
for j � �� � � � � Nu. Furthermore, N� and N� are, re-
spectively, the lower and upper costing (or prediction)
horizons, and Nu is called the control horizon � . As
usual, a receding-horizon strategy is applied, i.e. only
the first control move�v�ts� is used, whereas the rest
are discarded.

The free responses yf �ts � j� are computed by inte-
grating the non-linear model of eqn.2 at each sampling
instant. This leads to predictions which are quite close
to the behaviour of the true system. The output predic-
tions are then computed as Y � eY f �fH�V , whereeY f is a vector of free responses, and fH is a matrix
formed with the step-response coefficients of the on-
line linearised model. As pointed out in (Megas et
al., 1999), there are several ways to obtain the matrixfH. Here, the step-response coefficients which yieldfH are obtained linearising the ODE system numer-
ically about the current point x�ts��u�ts � ��� and
then using the Jacobian. � is the differential operator
(1-q��) and �V is a vector of future control moves,
defined as

�V �
�
�v�ts�

T � � ��v�ts �Nu � ��T
	T

The output predictions are computed using the super-
position principle, which is valid only for linear sys-
tems. However, if these predictions are performed over
a “short enough” horizon, this property can very ap-
proximately hold, as remarked in (Megas et al., 1999).
Obviously, the quality of the solution depends on this
approximation. The approach of (De Keyser, 1998)
overcomes this difficulty and leads to an exact result,
since the superposition principle is applied at each
iteration until the forced response (called optimised
response there) comes out to be zero, on-line appli-
cation for this method can be impossible, due to the
great computational burden which could be necessary
until the optimised response converges.

� The control moves are taken to be zero for j � Nu.



Now, a standard quadratic cost function is defined as
follows

J�ts� � �W � Y �
T
Q �W � Y � ��V TR�V �

whereQ andR are positive-semidefinite and positive-
definite weighting matrices respectively, and W is
a vector of future setpoints which are known at the
current sampling instant ts or, if not, taken to be
constant and equal to the current values. Finally, the
optimal control move vector is obtained solving the
problem

�V opt � argmin
�V

J�ts� subject to P�V � r�

where the matrix P and the vector r specify input
constraints. Details to build P and r are provided
in (Kuznetsov and Clarke, 1996). This problem can
be solved using standard optimisation tools, such as
Quadratic Programming(QP).

In the climate control problem presented in the next
section the state, input and output variables considered
are

x �
�
Tg
	T

�

u �
�
Tp rw

	T
�

y �
�
Tg
	T

�

as defined in Section 2.

4. EXPERIMENTAL RESULTS

The experiments have been performed in real double
glass greenhouse built in the Institute for Horticultural
and Agricultural Engineering (ITG) of the university
of Hannover (Germany), the dimensions of which are
200 m� of surface, and 3 m of average height.

The aim of these experiments is to control the inside
temperature of greenhouse. The setpoints are chosen
so that at night they are 18C, and by the day they are
23C until the 20 hours of the night. These setpoints
can vary depending on the type of plants inside green-
house (in this experiment, there were no plants in the
greenhouse).

The tuning parameters have been chosen as Nu � �
(control horizon),N� � �� (prediction horizon),R �
�	���	���I (control effort for heating system and
window opening respectively) and Q � �	I (track-
ing error weighting matrix). These values have been
obtained in order to achieve a convenient solution for
both the setpoint tracking and the regulatory problems.
The sampling time is of 1 minute.

A reference trajectory based on a third-order polyno-
mial was chosen, in order to provide a smooth control.

Fig.2 shows the result obtained by the constrained
MELPC. By night the system is able to follow the
setpoint, because there are no disturbances coming
form the sun, however the solar radiation effect can
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Fig. 2. MPC controller: closed loop response

observed by day, and some oscillations around the
setpoint can be observed.

The most important result of this experiment is the fact
that with the MPC controller there is no energy losses,
since the heating system is off when the windows are
opened. In Fig.2 it can be observed that the temper-
ature increase between 9 and 12 hours what means
that the valves are opened, when windows are closed
completely, out of this time interval the valve remains
closed because the heating pipe temperature is low. In
the formulation of the MPC controller the constraints
were the heating system temperature limits, and the
energy loss quantity in (W/m�) and can be described
as follows: The energy loss Q due to the ventilation is
a function of windows opening A:

Q � f�A��Ti � Tout��
Qlimt � f�Alimit��Ti � Tout��

Alimit �
g�Qlimit�

Ti � Tout
�

Then depending on the objectives of the control,
we can decide about the energy losses quantities to
achieve these objectives.

The MPC controller has been compared with the ITG
control system (adaptive PI controllers) in a similar
greenhouse (with no plants also), in the same day � ,
and Fig.3 shows the output and the control signals.
The system is not able to follow the setpoint, also the
heating system is on when the windows are opened
between 4:00 p.m. and 6:00 p.m.

The main advantages of the predictive controller can
be summarized in the following points:

� MPC controller gives to better yield
� Exact formulation of the restrictions.
� Multivariable and easy to implement.

� The day setpoint is 22 C.
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Fig. 3. PI controller: closed loop response

5. CONCLUDING REMARKS

Usually in greenhouses, PID controllers have been
used for climate control. These controllers have the
disadvantages that constraints are not considered,
SISO loop are implemented, and performance is usu-
ally poor. In this work an MPC algorithm is presented
and implemented in real time to resolve the problems
found for the PID controllers application.

These experiments show the importance of the use of
the new advanced control techniques to regulation of
very complex processes with high non-linearities like
the climate under greenhouse. Economic profitability,
transparency and simplicity, stand out among the main
advantages.

An MPC controller has been chosen to control a
non-linear MIMO system, with constrained controlled
variables. This controller has been compared with an
adaptive PI controller. The linearised model is ob-
tained at each sample instant, and an optimal control
signal is computed. The free response is obtained di-
rectly from non-linear model, and linear approxima-
tion is only used to compute the forced response.

This algorithm can be used to control the second level
for the hierarchical structure using a growth model
for the plant. In this level, economical criteria can
be optimised to achieve a production objective. This
work is left for a future research (Tantau, 1993).
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