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Abstract:  The backstepping technique was used in order to synthesise a non-linear control
law for the non-linear model of the power plant station. The non-linearities in the model are
related to steam flow through the super-heater and action of turbine valves. The time
constant of the boiler is considered as an unknown parameter. Its value has to be adapted.
The backstepping procedure presents a straightforward method to implement the law of
adaptation, which ensures the stability. Symbolic computations were used to derive control
law. The performed simulations have shown that the performance and quality of adaptive
non-linear control system is the same across the entire range of operation and the adapted
parameter converges to its nominal value. Copyright © 2002 IFAC
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1. INTRODUCTION

The non-linear control law has an advantage that it
works with the same performance and quality over
the entire range of non-linear plant operation. A
linear control law is able to perform well only
around the nominal point of operation. Therefore,
there is a need to design control system with better
performance than the linear controller can offer. One
of possibilities is to implement a non-linear power
plant model in the control loop (Pitscheider et al.
2000), (Prasad et al. 2000), (Sindelar 1996),
(Klefenz and Krieger 1992). This approach is
heuristic in nature and it is difficult to prove its
global properties, e.g. stability. The other method is
to derive a non-linear control law in an analytical
way. Basically, there are two ways, which enable to
obtain such control law for smooth, continuous
plants. The first of them is feedback linearization,
but this technique is considered to be sensitive to
model uncertainties. The second method is based on
Lyapunov function approach. It is called

backstepping (Krstic et al. 1995), (Ioannou and Sun
1996). This method provides a procedure for
designing Lyapunov function for consecutive plant
equations. It also gives a straightforward method to
implement the law of adaptation.

In this paper a non-linear, adaptive control law for a
power plant is synthesised using the backstepping
procedure. At the first stage, a certainty equivalence
control is derived (Bolek and Wisniewski 2000). The
appropriate Lyapunov function and the control law are
obtained. It can be done, provided that all parameters
of the plant are known. Subsequently, the time
constant of the boiler dynamics is considered as a
parameter, which should be adapted. The term
containing adaptation error is included in Lyapunov
function. The adaptation law in form of differential
equation is derived in order to make negative the
derivative of this adaptive control Lyapunov function.
The performance of the synthesised control system is
illustrated by simulation examples.
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2. POWER PLANT MODEL

The power plant station is a non-linear, dynamic,
multi-variable system composed of boiler, turbine
and generator. In order to synthesise a model that is
adequate for control applications, the following
simplifying assumptions were made:
• the control system of the water level in the

boiler’s drum works ideally,
• the control system of the combustion air does

not affect  power (steam) produced by boiler,
• the control system of the super-heated steam

temperature does not affect power produced
(steam).

The model (1) developed for the power plant shown
in Fig. 1 is based on recommendations made by  de
Mello et al. (1991). The non-linearities come from
the Flugl-Stodola equation and relation for steam
flow through super-heater.
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Tw  – boiler time constant – the parameter, which has
to be adapted; its nominal value is 260,s.
CD =120,s – time constant due to drum capacity
Th =7,s –  time constant due to volumes in turbine

and re-heater
Csh =20,s – time constant due to volume in super-

heater

γ = pDo/pTo  =1.2
1

1
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k  coefficients

related to the flow of  steam.

super-heater

HP stage of
turbine

[
�

G

p D

m w

p T

u1

P z

feedwaterf low
ERLOHU

d rum

u2

LP stage of
turbine

Fig. 1. Technological diagram of power plant
station.

x1=Pe   –  per unit electric power generated by power
station
x2=pT  –  per unit pressure before the turbine
x3=pD –  per unit pressure in the drum

x4=mw – per unit steam efficiency of the boiler (mass
flow)

u1-      turbine valve opening
u2 –       flow of the fuel
Pz –      demanded power.

3. SYNTHESIS

The synthesis will be made in two steps. In first, a
certainty equivalence method is considered. In the
second the adaptation law is synthesised.

3.1 The control law synthesis for certainty equivalence
case.

The equilibrium point for the system (1)

112 xupppkmu TTDw ==−== γ      (2)

The system (1) can achieve equilibrium for any power
x1 and any pressure before turbine pT. The control task
of the system is to produce demanded power Pz at
constant pressure pT = 1. Two integrations must be
added in order to move equilibrium to these set points.
The plant model with integrations  is given in (3).
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Ti1, Ti2 – integrator time constants

New co-ordinates (4) (denoted by ~) are introduced in
order to move the set point to the origin. In this
transformation the non-linearity in control u1 can be
also easily eliminated.

zww

z
DD

T

z
TT

PuuPmm

k

Pk
pp

p

Pu
uppPxx

+=+=

+
+=

+
+

=+=+=

22

2

22

1
111

~~

~

1~

~
1~~

γ
(4)

Plant model in new co-ordinates is given in (5).
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Virtual controls α1, α2, α3 are computed
successively in order to stabilise consecutive sets of
equations. The results are summarised briefly below.

It occurs that sub-system (5a) is linear and it can be
stabilised by linear state feedback. In this case the
variable 

Tp~  will be considered as first virtual

control. The sub-system (5a) can be rewritten in a
matrix form (6).
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For such system, it is possible to apply a linear-
quadratic controller. The state feedback is computed
accordingly to the positive definite, symmetric
matrix P, which is the solution of Riccati equation.

The controls (actual and virtual) are given in (7).
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The next virtual control is given in (8).
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with time derivative α1 is evaluated analytically
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The third virtual control is given in (10).
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The time derivative 2α�  (11) is evaluated analytically.

This evaluation  is not given here explicitly, because it
is quite involving.
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Eventually the actual control 2
~u  is derived in (12).
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The time derivative 3α�  is evaluated analytically. The

control law for 1
~u comes from (7).

xg11
~ =u         (13)

3.2 The adaptation law synthesis

Since Tw is an unknown parameter, it can not be used
to evaluate control (12).  The 

2
~u can be evaluated

using only an estimate 
wT̂ . The adaptive version of

(12) becomes (14).
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It occurs that it is much easier to adapt the inverse of
Tw. A new notation is introduced (15) below:

wT

1=ρ  , and its estimate  
wT̂

1
ˆ =ρ           (15)

The estimation error is  ρρρ ˆ~ −= .

The adaptation law will be obtained in the form of
differential equation. Its current solution will be used
to evaluate the current value of control 

2
~u . In the

standard backstepping procedure, the term 2
2
1 ~ρ  is

added to the Lyapunov function. Unfortunately, the
derived on this basis adaptation law does not perform
sufficiently well. The value of time constant does not
change the equilibrium point. The discrepancy
between estimated and actual values of time constant
is visible only in  transients. In the adaptation
procedure, in order to benefit from this phenomenon,



an estimation of state variable wm~ is introduced

(Ioannou and Sun 1996). The estimate 
wm̂~ is

evaluated by differential equation (16).
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The error of this estimation is defined as

ww mm ~̂~ −=ε

The adaptive Lyapunov function consists of the
same term as in certainty equivalence case V and the
terms containing estimation error.

2
2
12

2
1 ~

8
ρε ca VV ++= ,   c8>0      (17)

Its derivative:
( )( )

( )( ) ρρρ

ραε

�

�

ˆ~1~~~~̂~

~~~~

8
2

23
2

7

c
ummm

ummcWV

www

wwa

−+−−+

++−−+−−=
       (18)

W – is a positive definite function obtained in
certainty equivalence case; the unknown parameter ρ
is constant, therefore ρρ �� ˆ~ −= .

The terms in (18), which contain ρ~  will vanish, if

(19) holds.

( )( )www mmumc ~̂~2~~ˆ 328 −−−−= αρ�      (19)

When (14) is substituted into (16) and (19), then two
differential equations, which are used in adaptation,
are derived.
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4. SIMULATION EXAMPLES

Control laws (12) and (13) and adaptive law (20)
were derived using symbolic computations. The
control system (Fig. 1) was modelled in Simulink
(MATLAB).

The non-linear control law was applied with
following parameters. For linear part (5a) the state
feedback was evaluated. The matrices in quadratic
criterion are given below.
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Eventually, the eigenvalues of the linear part are:

6106352.2

01182.0

14244.0

−⋅−
−
−

Time constants of integrators:
Ti1 = 0.6 [s], Ti2 = 1.2 [s].

Parameters in Lyapunov function
  c4 = 0.23;  c5 = 0.001;  c6 = 0.00001.

It was noticed that the control system was very
sensitive to the value of coefficient c4. It is due to the
relation shown in (13).

The actual value of adapted parameter
was 00384.0260

1 ==ρ .

Two experiments were carried out. In the first, the
transient was caused by a step change in power
demand from 0.8 [per unit] to 0.75 [p.u]. In this case
the initial value of adapted parameter was 004.0ˆ0 =ρ .

In the second experiment the transient was caused by
a step change in power demand from 0.8 [per unit] to
0.85 [p.u]. In this case, the initial value of adapted
parameter was equal 003.0ˆ 0 =ρ .

In both experiments two simulations were carried out.
In one of them the adaptation was switched on. In the
second simulation, there was no adaptation and the
control system worked with a wrong value of time
constant Tw.

It turned out that the presence of adaptation procedure
does not affect greatly the quality of power transient.
In this case it looks like the response of multi-inertia
plant. The difference between curves with and without
adaptation would be hard to distinguish with the
resolution of the presented figures. Therefore, the
transients of power are presented by single curve in
Fig. 2 and Fig. 5.

The price paid for good power performance, are the
oscillations of pressures in the boiler. In Fig. 3 and
Fig. 6 appropriate transients of steam pressure at the
turbine inlet are given. In the case without adaptation
procedure, the oscillation amplitude is higher.

The transients of adapted parameters are given in
Fig. 4 and Fig. 7



Fig. 1. The block diagram of non-linear, adaptive control system.
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Fig. 2. Transient of power in first experiment
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Fig. 5. Transient of power in second experiment
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Fig. 3. Transients of Tp~ in first experiment
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Fig. 6. Transients of Tp~ in second experiment
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Fig. 4. Transients of estimate in first experiment
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Fig. 7 Transient of estimate in second experiment

VKLIWLQJ RI

YDULDEOHV

VHW RI

LQWHJUDWRUV

DGDSWDWLRQ

ODZ

UHJXODWRU SODQW



















Z

'

7

P

S

S

[
�

]
3










�

�

X

X

ρÖ



























w

D

T

m

p

p

e

e

x

~

~

~

~

2

1

1



















w

D

T

m

p

p

x

~

~

~

~
1



5. CONCLUSIONS

A non-linear model of power plant station was
considered. The non-linear control system was
synthesised using backstepping method. The control
law is well posed, even though the plant is in pure
feedback form. The obtained control law is quite
complex. The symbolic computation toolbox in
MATLAB was used to get the final derivation.  It was
possible to design, the simulation model in
Simulink/Matlab.

As it can be seen in Fig. 2 and Fig. 5, the transients of
power exhibit similar characteristic. They reach the
desired set point without any overshoot and in
reasonable time. The same performance is achieved
even if the exact value of boiler's time constant is not
known. The control system derived by backstepping
method is a turbine-lead type. The control, which acts
on turbine valve, is close to the output (power). This
makes the control of power relatively easy. On the
other hand, the small, damped pressure oscillations
occur in the boiler (Fig. 3, Fig. 6). This is an
acceptable price for higher overall performance.

If adaptation procedure is introduced, then the
oscillations in pressures can be reduced, which may
result in longer, uninterrupted work of the boiler
without any need for repair.

During the adaptation, the estimated parameter got
closer to the nominal value. The transients caused by
step change in power demand were too short to obtain
better convergence. There is still a discrepancy
between estimated and true values. However, the
stability is guaranteed analytically by adaptive
Lyapunov function.
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