

AN ARCHITECTURE FOR A MULTI-AGENT SYSTEM TEST-BED

L. Motus*, M. Meriste**, T. Kelder**, J.Helekivi**

*Tallinn Technical University, Estonia
leo.motus@dcc.ttu.ee

**University of Tartu, Estonia
merik.meriste@ut.ee

Abstract: Architecture of a test-bed is suggested that has capabilities for the development
of agents and multi-agent systems, and also serves for semi-automatic testing, assessment
and verification of selected properties of those agents and systems. The test-bed is
essentially based on models of interactive computations. New features in the test-bed are
caused by an attempt explicitly to describe and formally analyse timing characteristics of
agents and their interactions. Time properties of agents and their interactions have top
importance in guaranteeing proper functioning of many monitoring and control
applications. Copyright © 2002 IFAC

Keywords: Agents, computer control, multi-stream interaction machine, timing analysis,
test-bed

1. INTRODUCTION

The co-operation and communication capability of
heterogeneous computing systems is rapidly
increasing due to progress in elaboration and approval
of standards by W3C and OMG (see www.w3.org
and www.omg.org respectively). The achieved
progress facilitates a wider application of loosely
coupled software systems, like agent-based systems,
in the industrial environment. Technologies of the last
decade have focused on the interaction between the
agents, and of agents and their environment.

For instance, in addition to traditional mobile robots
and several logistic applications, agent-based
technology is increasingly considered for distributed
computer control systems, remote condition-
monitoring and diagnosis systems, and other
(possibly collaborative) decision-making applications.
This is partially caused by the capability of
interacting agents to generate more complex
behaviour than one would expect from the
straightforward structure of agents.

The application domain of agent-based paradigm is
extending. This process inevitably causes the

emergence of “latent” requirements to agents and,
especially to multi-agent systems – such as history
dependence and explicit time-sensitivity of their
behaviour. In many cases empirical demonstration of
expected behaviour may not suffice. Instead, formal
verification of behaviour is desired, this in turn
assumes the use of models of interactive computing
(see, for example Wegner and Goldin 1999, Motus
1995).

Also, in the increasing number of applications it
becomes essential that several time constraints be
verifiably satisfied by each agent, and by groups of
co-operating agents (Motus and Meriste 2001). This
introduces new aspects into a discussion regarding
models of interactive computations, time models and
their combined use in verifying time-behaviour in
software-intensive systems (e.g. Motus and Naks,
2001).

Relatively close to interactive computing is the
phenomenon of emergent behaviour (Simon, 1996) in
multi-agent systems – e.g. real-time systems, or
human organisations. In such systems agent’s
learning implies adaptation and adaptation in turn
implies interaction. Adaptation (pro learning) is an

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

mailto:leo.motus@dcc.ttu.ee
mailto:merik.meriste@ut.ee
http://www.w3c.org/
http://www.omg.org/

example of history-dependent behaviour that cannot
be modelled within an algorithmic model (i.e. without
history), neither in an order-of-events setting (Goldin
and Keil, (2001)). The premises and methods,
necessary to satisfy the emerging “latent”
requirements have never been sufficiently
investigated. In some cases qualitative
recommendations can be given, however, quantitative
recommendations, as well as the underlying
theoretical study are not yet available. Time-
constraint negotiations, dynamics of learning and
adaptation, and their influence upon the goal function
are just some examples of insufficiently studied
problems. The essence of negotiation process (see, for
example, Rosenschein and Zlotkin 1998, Bailin and
Truzskowski 2001), learning (e.g. Stone 2000) and
adaptation (e.g. Tsypkin 1971) has been studied
relatively thoroughly – still, the influence of time
constraints on negotiating, learning and adaptation
capability is not really studied.

Let us imagine negotiations concerning the potential
co-operation, or competition of two agents, under
incomplete information about the goals and
capabilities of respective partners. It seems pretty
obvious that the one with better negotiation strategy,
or faster learning curve and/or better adaptation
dynamics has serious advantages for fixing winning
conditions during a time constraint negotiation
process.

Another group of emerging requirements is bound to
the model of computations on which the verification
methods are based. In addition to seminal papers by
Wegner (1997), Wegner and Goldin (1999) and
Goldin and Keil (2001), several interesting results (at
least implicitly) related to interaction-based
computing are scattered around without proper
comparison of properties and cross-reference to each
other. A variety of models of interactive computations
have emerged from three independent application
domains. For instance, from distributed artificial
intelligence (kenetics -- (Ferber (1999) and MadKit)
and rational agents -- Wooldridge (2000)), from
computer science and software engineering (formal
program verification -- Milner (1999) and object-
oriented programs -- Wegner (1997)), and from
modelling real-time software (timing analysis --
Motus (1995), Caspi and Halbwachs (1986)).

The models of interactive computations emphasise
and support verification of systems where a primitive
component for building a system is not an algorithm,
but rather a set of interacting, repeatedly activated,
terminating algorithms; or alternatively a non-
terminating computing process. In many cases the
study of infinite, and dynamic input/output sequences
can reveal some properties of the respective
components – i.e. regarding non-terminating
behaviour of computing processes, as well as the
behaviour of countable many times repeatedly
activated, terminating, interacting computing
processes.

From a more practical point of view, many interesting
methods and supporting tools for developing agents
and multi-agent systems have been developed.
Majority of those methods and tools focus on
studying specific agent-related properties, and on
developing agent-based applications (see, for
instance, MadKit and Jade). Overwhelmingly the
study of properties is based on empirical comparison
of certain features of agent’s behaviour to those
observed in biological individuals and/or social
organisations formed by biological individuals.

Agent applications are prevailingly organised by
attempting to find and maintain a suitable order of
interactions and decisions. However, in increasing
number of applications mere qualitative ordering is
not sufficient -- e.g. time-critical applications. Quite
often ordering of events assumes complete knowledge
of causal reasons. In some cases this knowledge may
not be available, or may not be usable because of
insufficient computing power -- in that case one can
always approximate causal reasons by time-
constraints.

In this paper the authors suggest an approach to the
development of agents, agent systems and the
supporting development and analysis tools that differs
from the conventional one in two aspects. Firstly, this
paper suggests that time sensitivity of various parts of
agents, and agents’ interactions, is to be explicitly
described and studied by using formal models of
interactive computations.

Secondly, the authors suggest that sufficiently good
theoretical and practical basis exists to start building a
test-bed that would foster practical use of formal
analysis methods and thus assist in merging recent
development trends in computer science, software
engineering, artificial intelligence, computer control,
and other domains. Such a test-bed would serve as a
discovery system (Evans, 2001) for agent-related
knowledge, in addition to being just a development
environment for agents and agent systems. For
instance, the test-bed would serve as an experimental
basis for elaboration of theories and methods for
quantitative assessment of selected properties, such as
efficacy of the negotiation process, and evolution of
communication capabilities of the structure that is
emerging during the negotiation process and/or
interaction of agents. A special tool in a test-bed is to
take care of verifying the consistency of time-
behaviour in multi-agent systems.

2. ARCHITECTURE OF THE TEST-BED

The test-bed itself is a multi-agent system, and
therefore comprises loosely coupled components
(agents) together with a framework of basic services
and only partially defined interaction structure
between those components. The test-bed is modelled
in UML and development is based on unified

software process, standards and recommendations
provided by FIPA are carefully followed. However,
the authors are aware, that the development of such a
test-bed is kind of a non-terminating process. Many
methods and tools required for the test-bed are not
readily available, and the test-bed itself serves as an
inspiring generator of facts and requirements for
fostering the research into methods of operation
assessment of multi-agent systems.

2.1 Pragmatic point of view

The test-bed comprises a shell that provides basic
common services, agents registered with the shell,
explicitly registered coalitions of agents, and various
tools used to develop agents and to investigate their
behaviour. It is essential that the agents can reside in
geographically distributed locations also the tools
may be distributed, if necessary.

The shell of the test-bed provides an extendable
framework of basic common services. For instance,
directories for agents registered with the shell,
support for creation of repositories for common
knowledge to be used by all agents, and/or by
coalitions of agents (see Fig.1). Separate set of
services is provided for the monitoring, assessment
and analysing tools, such as knowledge- and
databases created or used by the tools, the
communication services for interaction of tools and
agents. The provided services can be invoked and
accessed automatically by the agents and/or tools
according to assigned access rights, or in some cases
by the user via the main user interface of the test-bed.
The access rights are requested and granted via the
main user interface. From the main user interface one
can also navigate to specific tools, to repositories,
knowledge- and databases that in many cases may
have their own user interfaces.

Figure 1. High-level structure of the test-bed

2.2 Idealistic point of view

The test-bed is a multi-agent system comprising three,
or more clusters of agents (or agent-like components).
Agents belonging to the same cluster have, as a rule,
full-scale in-cluster communication capability.
However, each agent can freely select the level of its
in-cluster co-operation with the other agents. There
are no general restrictions on shared information and
depth of co-operation between agents in a cluster,
since the cluster members are closely collaborating
and their goal functions are consistent with each other
by definition. A cluster may be partitioned into sub-
clusters (coalitions), if the need for general
restrictions appears. Usually this means that agents
from different sub-clusters compete with each other,
and the restrictions cater for safety, security, and
other application-specific rules of behaviour.

Each cluster has a different role each (sub)-cluster
unites agents that have consistent roles. For instance,
one cluster comprises (or models) the real-world
entities, or strange agents that cannot be optionally
modified by the designer of the other (sub)-clusters.
In some cases this cluster may include a physical
model, or actual physical agents (e.g. mobile robots).

The second cluster models (or represents) agents that
monitor or control agents from the first cluster, or
interact with each other in order to satisfy given goal
functions. Competing coalitions (sub-clusters) of
agents are possible within this cluster. Conventional
multi-agent development systems usually focus on
problems that are strictly intrinsic for this cluster of
agents.

The third cluster comprises development,
measurement, estimation and reasoning tools used for
assessing the properties resulting from the evolution
processes in the two previous clusters, plus the tools
supporting description of agents forming the two
previous clusters.

2.3 About the tools

The tools will be added to the test-bed gradually, as
the test-bed and the tools evolve. The first tool is for
agent development – a standard tool will be used,
(e.g. Jade) with some modifications in order to enable
the use and comparison of various models of
interactive computation (e.g. sequential and multi-
stream interaction machines and Q-model (see Motus
and Meriste 2001)).

The other tools (e.g. for timing analysis; see Motus
(1995)) are to be adapted for the agent systems, or are
to be developed from the scratch, as the theoretical
basis for the analysis becomes ready (e.g. a tool for
monitoring the evolution of integral behaviour of a
multi-agent system). The timing analysis tool has
been tested for many years (see, for instance, Naks
and Motus 2001) and is, in principle, suitable for
analysing timing in a multi-stream interaction
machine. However, timing in agent systems is, in

The main
user interface
for test-bed

Monitoring and
analysis tools

GUI for
tools

Services
for agents

Agents and
coalitions

Services for
tools

many cases, subtler and more complicated issue as
compared to timing in a conventional real-time
system.

In a conventional real-time system one may need to
consider different time counting systems and time
concepts in different subsystems. In time-sensitive
agent-based systems each agent may need three
separate time-counting systems (for communicator,
manager and functional body, see section 3 of this
paper). Within each time-counting system strictly
increasing thermodynamic, fully reversible, and
relative time concepts should be present to guarantee
full timing analysis capability (Motus and Rodd,
1994).

Potentially required modification of the timing tool
may invoke additional research into timing analysis.
Timing analysis is done off-line (e.g. pre-tun-time
scheduling) as a rule, based on required, specified and
actually measured time properties (and theoretical
models) of specification and design of the multi-agent
system. The interaction structure of the agents and
traffic estimates reached up to the moment of timing
analysis as the result of on-going adaptation and
learning should also be considered, especially if the
interaction structure differs from that used when the
previous timing analysis was performed. In highly
dependable applications one may also need run-time
monitoring and/or diagnosis of timing correctness.

Similar approach can be used for assessing the
efficacy of negotiating, learning and adaptation
algorithms. The case of monitoring and analysing a
test run of the designed system (i.e. the actual co-
operation of agents, environment, and possibly
strange agents) in order to assess the satisfaction of
the goal function, is more sophisticated and definitely
needs some online measurements. This in turn
assumes the existence of measuring subsystem
(agent) and a mechanism for making the
measurements accessible to tools without violating
the actual behaviour of the monitored system.

The basic foreseeable problem invoked by on-line
measurements is the potential violation of time
constraints imposed upon the behaviour of an agent
system due to added actions related to on-line
measurements and monitoring. The problem is not
serious if the on-line assessment of multi-agent
system’s functioning is done in a simulation mode --
this would allow to filter out the activities related to
monitoring and measuring.

3. ARCHITECTURE OF AN AGENT

An agent has to meet several expectations, some of
which can be considered as requirements that cannot
be avoided. Some instances of unavoidable
requirements are -- a registered agent has to comply
with FIPA standards (see FIPA), and with the other
specific requirements of the test-bed shell. However,

one of the interesting research areas is interaction
with strange agents – this would be possible only if
the test-bed allows exceptions. Agents that do not
meet FIPA standards, or some other common
agreements within the test-bed, should be allowed to
register with the test-bed as an exception under
special security measures.

The other, less generally applied, expectations
regarding agent’s architecture stem from the
subjective research goals of the authors. Those goals
include study and comparison of the properties of
alternative implementations of a multi-stream
interaction machine, description of time sensitivity of
various parts of an agent, and reasoning about the
influence of time properties of member agents upon
the operating efficacy of agents’ coalitions.

The above considerations have resulted in a logical
structure of an agent as comprising three closely
interacting but relatively autonomous and
independently substitutable parts (components):
• Communicator, that interacts with the other

agents via the respective functional part in the
test-bed shell; performs the first-level
interpretation of the messages, and is responsible
for carrying out the negotiations from the first
contact to the termination, according to the
approved protocol;

• Manager, that performs more advanced
interpretation of the message contents, updates
the estimates of beliefs (or knowledge) of the
agent; modifies the respective knowledge base
about the agent’s actual and potential partners,
decides about the proper response to messages,
adapts the functions of the agent’s main body
according to the results of the negotiations, and
adjusts the goal function of the agent if
necessary;

• Functional body of an agent is responsible for
proper actions that lead to satisfaction of agent’s
goal function, operation of the functional body
can be reorganised and/or adapted by the
Manager. The adaptation is based on the new
knowledge extracted by the Manager from the
messages of other agents, the environment, and
by recent values of the goal function.

Each of those components may have several ready-
made substitutes (using alternative methods) in the
test-bed repositories. The researcher (or user) that
works with the test-bed can select a substitute for a
component in order to compare the influence of
different methods. A vaguely similar approach has
been taken in Fricke et al (2001). Such a partition will
assist in theoretical and experimental study of the
influence of time-sensitivity and adaptability of an
agent upon overall functioning of multi-agent
systems, since each separate time sensitive and
adaptive component of an agent can be modified
independently of the others.

From the point of view of agents’ timing analysis this
also illustrates the increase in complexity as
compared with conventional real-time systems – in
many cases one has to deal with three explicitly
separate time models within one agent.
Communicator, manager and the functional body of
an agent may operate, in a general case, within
different time-scales based on different time-counting
systems.

A test-bed has dual role – it supports the development
of multi-agent systems, and in the same environment
the developer can test, formally analyse, and assess
different aspects of the system’s operation by using a
suite of dedicated tools. This becomes possible only if
those tools have explicit access to intrinsic variables
of the multi-agent system – e.g. state variable values,
parts of messages, updated beliefs, and other
information that influences the decisions. Such
information is usually not available for the outside
world of an agent (or a group of agents). The
extraction of intrinsic information and its
transportation to external user during normal
operation may cause serious technical difficulties, e.g.
security problems and also coherence of obtained
information is often questionable. In the test-bed this
become possible when the monitored multi-agent
system operates in a simulated time.

In addition to directly addressed inter-agent messages
an agent consumes and produces information for
intrinsic use, such as messages for internal
information exchange between communicator,
manager, and functional body of the agent. Quite
often an agent needs a regularly updated in-agent
knowledge base to support intrinsic decisions
required for controlling and adapting its operation.

Each coalition of agents, and the whole multi-agent
system usually creates common knowledge base that
can be freely accessed by coalition members and/or
by system members. Typically this base contains
variables’ values and events occurring in the
environment, rules of conduct approved by the
environment and other more specific knowledge that
may be different for each coalition of agents.

It is not quite clear what is the most suitable way for
the tools to access the information that actually
determines the behaviour of multi-agents systems.
Slightly adapted blackboard technique has been
selected as a starting point for the test-bed. Further
study, and experimentation is needed to assess
suitability of this approach.

4. OPEN QUESTIONS AND CONCLUSIONS

Quite sincerely, at the moment it is possible to
implement only agent development part of a test-bed.
Tools and methods for analysing time sensitive
behaviour of multi-agent systems are still under
development. The progress in this domain is

considered in other papers. Therefore the test-bed
development is a typical case of collaborative
problem solving (pair programming) where the
progress in test-bed fosters progress in theoretical
development of analysis methods, and visa versa. So
the test-bed development is by definition a non-
terminating project, successful implementation of its
first stage and experiments on it will inspire further
research that will lead to new development stages,
etc. Nevertheless, even a non-terminating activity
should have interim goals, and checkpoints where the
achievements are assessed and further development is
decided.

The near future (the first stage) of the test-bed
development is seen in three steps:

• Implementation of the shell and agent
development tools, as described above

• Theoretical study of models of interactive
computations with outcome related to formal
analysis methods of respective multi-agent
systems

• Implementation of timing analysis tool for
the test-bed.

The on-line assessment tools, generation of
measurement and reference data required by the
assessment methods, the resulting change of time
behaviour of the target system provide at the moment
more questions than answers.

ACKNOWLEDGMENT

The partial financial support provided by ETF grant
4860 and grants no. 0140237s98, 0250556s98 from
Estonian Ministry of Education is acknowledged.

REFERENCES

Bailin S.C. and Truszkowski W. (2001) “Ontology
Negotiation: A Dynamic Approach to Substantive
Communication between Agents”, Proc. 5th World
Multi-conference on Systemics, Cybernetics and
Informatics, vol. III, 505-510

Caspi P. and Halbwachs N. (1986) “A Functional
Model for Describing and Reasoning about Time
Behaviour of Computing Systems”, Acta
Informatica, vol.22, 595-627

Evans R.P. (2001) “Design as Discovery. Ten
System Design Tenets”, Proc. 5th World Multi-
conference on Systemics, Cybernetics and
Informatics, vol. XI, 546-551

Ferber J. (1999) “Multi-Agent Systems”, Addison-
Wesley, 509 pp

FIPA http://www.fipa.org
Fricke S., Bsufka K., Keiser J., Schmidt T., Sesseler

R., and Albayrak S (2001) “Agent-based telematic
services and telecom applications”,
Communications of the ACM, vol.44, no.4, 43-48

Goldin D. and Keil D. (2001) “Interaction,
Evolution, and Intelligence”

http://www.fipa.org/

JADE http://sharon.cselt.it/projects/jade/
Jennings N.R. (2001) “An agent-based approach for

building complex software systems”
Communications of the ACM, vol.44, No.4, pp.35-
41

MadKit http://www.madkit.org
Milner R. (1999) “Communicating and Mobile

Systems: The PI-calculus”, Cambridge University
Press

Motus L. and Meriste M (2001) “Towards self-
organising Time-sensitive control system’s
software”, Proc. IFAC Conference on New
Technologies in Computer Control, November
2001, Hong Kong, 236-241

Motus L. and Naks T. (2001) “Time models as used
in Q-model and suggested for RT UML”. 5th
World Multi-Conference on Systemics,
Cybernetics and Informatics, vol. XI, 467-472

Motus L (1995) “Timing problems and their
handling at system integration”, in S.G.Tsafestas
and H.B.Verbruggen (eds) Artificial Intelligence
in Industrial Decision Making, Control and
Automation, Kluwer Publ., pp.67-88

Motus L. and Rodd M.G. (1994) “Timing analysis
of real-time software”, Pergamon/Elsevier

Naks T. and Motus L. (2001) “Handling Timing in
a Time-critical Reasoning System – a case study”,
Annual Reviews in Control, vol.25, 157-168

Rosenschein J.S. and Zlotkin G. (1998) “Rules of
encounter”, The MIT Press, 229 pp.

Simon H.A. (1996) “The Science of the Artificial”,
The MIT Press, 231 pp

Stone P. (2000) “Layered Learning in Multi-agent
systems”, The MIT Press, 284 pp

Tsypkin Ya. (1971) “ Adaptation and Learning in
Automatic Systems”, Mathematics in Science and
Engineering Series, vol.73, Academic Press

Wegner P. (1997) “Why Interaction is More
Powerful than Algorithms”, Communications of
ACM vol.40, No.5, pp.80-91

Wegner P. and Goldin D. (1999) “Co-inductive
Models of Finite Computing Agents”, Electronic
Notes in Theoretical Computer Science, vol.19,
www.elsevier.nl/locate/entcs

Wooldridge M. (2000) “On the Sources of
Complexity in Agent Design”, Applied Artificial
Intelligence, vol. 14, no.7, 623-644

http://sharon.cselt.it/projects/jade/
http://www.madkit.org/
http://www.elsevier.nl/locate/entcs

	2. ARCHITECTURE OF THE TEST-BED

