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Abstract: This paper considers a new stabilization problem for the Pendubot.
Namely how to construct and stabilize via feedback the following trajectory: the first
(controlled) link of the Pendubot remains at rest having a given angle with horizontal,
while the second (freely moving) link duplicates a given motion of the 1-d.o.f. plane
pendulum. Such a stabilization could be also seen as re-distributing the energy of
the Pendubot between actuated and non-actuated parts, or saving the energy in the
motion of the non-actuated part. The main result of the paper is the description of
a wide family of the state feedback controllers, which solve the problem. In addition,
the delicate issue of the convergence’s rate of the closed loop system solutions to the

desired trajectory is discussed in details.
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1. INTRODUCTION

Controlling an underactuated nonlinear system
is inherently difficult problem. There are a few
analytical methods which are able to tackle such
a problem, most of them are based on structural
properties of the system. The reader, for exam-
ple, can check the papers (Ortega et al., n.d.)
and (Bloch et al., 2000), where conserved quan-
tities and symmetries of the system play a major
role in constructing a stabilizing controller for an
equilibrium. Another example, where conserved
quantities are important, is related to the problem
of stabilization of some particular subset of the
state space, possibly different from an equilibrium.
The reader can check, for example, the results of
(Fradkov, 1996; Astrém and Furuta, 2000; Shiri-
aev et al., 2001), where a stabilization of homo-
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clinic curves of the plane pendulum was made;
and the results of (Ludvigsen et al., 1999; Al-
bouy and Praly, 2000), where a stabilization of
the stable manifold of the spherical pendulum (a
2-dimensional subsdlimridienal state

space), was done.

This paper is concerned with an two-link under-
actuated robot called the Pendubot. It has an ac-
tuator at the shoulder (link 1) and no actuator at
the elbow (link 2). One of standard control prob-
lems related to the Pendubot is a stabilization
of one of its equilibria. Among other papers the
reader can check (Spong and Block, 189 Fantoni
et al., 2000; Kolesnichenko and Shiriaev, 2002),
where some methods for stabilizing the upper
equilibrium are suggested.

Another interesting control problem related to
the Pendubot is a construction and orbital sta-
bilization of periodic motions via feedback. This
paper is aimed at constructing and stabilizing



a particular family of periodic motions for the
Pendubot. Namely, the desired motions are: The
first link is controlled to be at rest having a given
value of angle with the horizontal, while the second
uncontrolled link duplicates some periodic motion
of the freely moving plane pendulum.

There is a intuitive physical reasoning for choosing
these periodic motions to be stabilized. Indeed,
such a problem reflects an intention, first to store
some energy in the system motion, and then, to
deliver all the stored energy to the underactu-
ated subsystem. Fortunately the underactuated
subsystem of the Pendubot is just a pendulum,
then this stored energy will correspond to periodic
motion.

This strategy of storing energy could be useful in
the case when a controlling device has a limited
power. Then it is reasonable to save some energy
in the system before the main control law is
implemented. For example, in the case of swing
up problem for the Pendubot with law-power
actuator on the first link and the heavy non-
actuated second link, we suggest first to store
appropriate energy in rotation of the second link.
When the rotations achieve some level, this stored
energy could help for implementation a swing up
controller.

The main contribution of the paper is the descrip-
tion of a wide range of state feedback controllers,
which solve the problem. Then we have discussed
the properties of the controllers to provide an
exponential rate of convergence. The paper is or-
ganized as follows. The problem statement with
some preliminaries are given in the Section 2. The
main results are presented in the Section 3, while
some simulations and conclusions are drawn in
Sections 4 and 5.

2. PROBLEM STATEMENT AND
PRELIMINARIES

Under the standard assumptions the equations of
the Pendubot are

where g = [q1, g2]” € S x S!, q1 is the angle that
link 1 has with horizontal, g5 is the angle that the
link 2 makes with link 1;
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where
0, = mllf1 + mzlf + I, 6y= mzlg2 + I,
03 = malil,,,
m1, mo are the masses of the link 1 and the link 2;
l1, I3 are the lengths of the link 1 and the link 2;

l¢, is the distance to the center mass of the link 1
from the suspension point, I., is the distance to
the center mass of the link 2 from the suspension
point; I, I are the moments of inertia of the
link 1 and the link 2 about their centroids;

C(g,d) = bssings | 2 _‘12_‘?1],
(g, 9) 3s1nqz[ i 0

059 cos(q1 + g2) 0
where 77 is the control input, and

Glg) = 649 cos g1 + 059 cos(q1 +qz)] = [n]

04 = mllcl +moly 05 = mQZCZ.

The total energy of the Pendubot is

R . 1., .
Ewq,q) = 24 M(q)d +T1I(q) = 24 M(q)q +

+049 (sing; + 1) + 059 (sin(q1 + g2) + 1) (3)

and it could attain any values from the interval
[0,+00). Let us formulate the control problem:
Given an angle qf = 3 and a motion [g§(t), 5 (t)]

such that

. 059 .
() = =2 sin gd (1),

> 4
9 Vit >0, (4)

the objective is to define a feedback controller,
which makes the trajectory

™

a(t)=gi(t) =5, a(t) = (1) =0

a2 (t) = g5(t), d2(t) = g5 (t)

~—

1nwariant with respect to closed loop system vector
field. In addition, it is of interest to make this
periodic solution orbitally asymptotically stable. m

Let us comment the problem:

(1) The value of the angle ¢f is chosen /2
just for simplicity. It can be any except two
critical values ¢¢ = 0, 7, but this will just
complicate expressions;

(2) Besides an exceptional case, when [g¢(t), 4 (t)]
corresponds to the homoclinic curve of the
system (4), the motion [¢§(t),d4(t)] can be
locally described via an appropriate value of
the energy E, of the system (4), where

62

5 @ + 059(1 + cos gz2) + 2049.(6)

Ep(g2,42) =
(3) The case of homoclinic curves [g¢(t), 3% (t)]
of the system (4) was previously considered
in (Fantoni et al., 2000; Kolesnichenko and
Shiriaev, 2002), where stabilization of ho-
moclinic curves was used for stabilizing the
upper equilibrium of the Pendubot. The re-
sults of the papers (Fantoni et al., 2000;
Kolesnichenko and Shiriaev, 2002) explicitly
show how to construct stabilizing controller,



but both papers do not provide or even dis-
cuss the rate of convergence issue. Coming
to the physical implementation of the con-
troller it is not enough to ensure (orbital)
asymptotic stability, but rather get exponen-
tial convergence. This is one of the subjects
of the current paper. Below we extend the
stabilization scheme suggested in (Fantoni et
al., 2000; Kolesnichenko and Shiriaev, 2002)
and discuss the rate of convergence in details.

Denote Ey = E, (¢3(t),43(t)) and introduce the
function

. k ko .
V(g,q) = o (E— Eo)2+72qf+

—|—% (ql — g)z + k4(E — Ep) (‘h - g) )

(7)

where k;—ks are some constants. It is readily
seen that the function V equals to zero exactly
on the subset Vy of the state space, where the
desired trajectory (5) lives. To be the Lyapunov
function candidate V' should be positive around
Vo. The reader can easily check that in this case
the parameters k;—k4 satisfy to

k1 >0, ko >0, k3 >0, kl-k3>k§. (8)

Taking the time derivative of V' along the solu-
tions of the system (1), one has

V= [n (kl (E — Eo) + k2[01]M (¢)* [(1]] +(9)

+ ks (q1 - g)) +H(q,ri)] )

where
110 02
1]M(g)~! =
[0 1]M(q) [1] 6162 — 63 cos? go
and
H(q7 ) =ks (ql - _)+k4 (E E0)+ 0,— 02 cos2

61 q2

X (0203 singa (41 + 42)% + 03 Cos g2 sin ga¢? —
02049 cos g1 + 03059 cos g2 cos(q1 + Q2)) ;

To ensure sign semi-definiteness of V one can try
to solve the following equation with respect to the
control variable 71

Tl(kl(E — Ey) + W + k4 (q1

+H(q,4) = —é(q1)-

B g))(10)

Here ¢(z) is any smooth function, z7¢(z) > 0
Vz # 0. The next statement gives simple sufficient
condition for solvability of the equation (10)

Lemma 1. If k; > 0, ks > 0 and k4 satisfy the
inequality

ky > 61 - (k1 - Eo + |k4| - 27), (11)

then the value of the function

ki (E — Eo) + 0192% +ki(q— %) (12)

62 cos? g2

is strictly positive for any (q,4) € S? x R?, and
the control variable 71 can be found from (10). m

Proof. The energy E of the Pendubot is nonneg-
ative function, therefore if the function

02 o
—ki - E 2 _r
k- Ey +k20192 — 6o’ + ks (‘11 2)

is positive then the function (12) is positive too.
The last expression one can rewrite as

o >hi-Fo+ha(3-a).

ks 6162 — 63 cos? ¢o

One can easilty check that

0, 1
min ———— = — |
2265t 0165 — 62 cos? g» ~ 8,
max kq4 (E — q1) < |k4|27‘(‘.
g1 €S?

Therefore, the last inequality holds provided that
the inequality (11) is valid. m

As a result, if the parameters k; are chosen to
satisfy (11), then the controller 7y determined via
(10), makes the time derivative of the Lyapunov
function candidate V sign semi-definite

V(t)=—q(t) x ¢ (d:(t)) - (13)

Using the standard terminology, the globally de-
fined feedback transformation (10) makes the
transformed system passive with the storage func-
tion V.

3. MAIN RESULTS

If the parameters ki, k2 and k4 are chosen to
satisfy to (11), then the controller determined by
(10) is globally defined. This makes possible to
find all w-limit points of the closed loop system.

Lemma 2. Consider the Pendubot together with
the controller defined by (10) where the coeffi-
cients ki—ks satisfying the inequalities (8) and
(11). Then the w-limit set of the closed loop sys-
tem consists of the set Vy and a number equilibria
with the coordinates (g7, ¢3) defined as a solution
of the equations

ks (gt — %) +ka{029(1+sing})+659—Eo} Bag cos gt (14)
- 1

k1{Eo—64g(1+sinq;)—0s9 }+ka(F—a5)

qI+q§:{g or —g}mod%r. (15)



The proof of Lemma 2 is omitted due to lack
of space. The next step in the controller design
for the Pendubot is to determine the range of
the parameters k;, which satisfy the constraints
(8), (11), and which guarantee that any additional
equilibrium — the solution of the equations (14)-
(15), if exists, is hyperbolic. It could be done for
example by taking linear approximation of the
closed loop system around this equilibrium.

In any case, it is obvious that number of solution
of the equations (14)—(15) is finite (or maybe
empty). Therefore, Lemma 2 guarantees at least
that the set V; is asymptotically stable, but possi-
bly not global. This implies that the periodic
motion (5) of the closed loop system is
asymptotically orbitally stable. To implement
the derived controller (10), one would appreciate
more information about the asymptotic orbital
stability of the constructed periodic trajectory.
Particularly, the cases, when this stability is expo-
nential, are of great interest. The conclusion about
the convergence made before is based on the anal-
ysis of the w-limit sets of the closed loop system.
Unfortunately, this method does not provide any
quantitative measures of the transition, it rather
shows sets, which may attract solutions.

To perform the analysis of convergence’s rate, we
suggest to linearize the closed loop system around
the periodic solution (5).

Lemma 3. Consider the Pendubot with the feed-
back controller 7; defined via (10). Then the linear
approximation of the closed loop system around
the periodic solution (5) is a linear periodic system

Y1 0 0 1 0 Y1
d | ys2 0 0 0 1 Y2
el — (16
at | vs B a(t) as(t) aa(t) | | s [ 1

a1(t) az(t) as(t) as
Ya Bi(t) Ba(t) Ba(t) Ba(t) | [va

where

o (t) = —5263 sin g3 (¢) (g9 cos gf(t) — ((1)") -
—%3 4 - O5gsing(t)

as(t) = v-0sgsings(t)

as(t) = — L0 — . (62 + b3 cos g (1)) 4 (¢)

as(t) = —v-0245(¢)

fu(e) =~ gy () + GO
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The proof of Lemma 3 is based on the standard
routine calculations. As shown above, the closed
loop system possesses the periodic solution

a(t)=ql(t) =5, a(t)=¢(t)=0

17
d2(t) = 45 (). "

One can readily see that the linearized system (16)
has the following periodic solution

yi(t) = £at(t) =0, y5(t) = £4f (1) =0

. 059 sin g2 (¢
yi(t) = 2ad(t), yd(t) = Lag(t) = Leoine ),

(18)

The last equality is due to (4). As known, an
existence of the periodic solution (18) of the
linear periodic system (16) implies that one of the
multipliers, for example p;, of (16) equals to 1.
Furthermore, the orbital asymptotic stability of
the nonlinear closed loop system will guarantee
that the system (16) is at least stable, i. e. all
other three multipliers p2, p3, p4 belong to closed
unit disc of the complex plane.

For the nonlinear closed loop system the rate of
convergence to the solution (17) depends mainly
on the location of these additional 3 multiplies
of the linearized system (16). Indeed, if these
multipliers are within open unit disc, then the
convergence is erponential. Otherwise, if some of
them belong to a boundary to the unit disc (i.e.
have the magnitude 1), then the convergence will
be poor.

Lemma 4. Denote T the period of the system
(16). Then

¢'(0)
T

2

P2',03'P4=6XP{— }<1, (19)

i. e. the product of unknown multipliers of the
system (16) is always less than 1. m

Proof. Denote Y (¢) a matrizant of the system
(16), i. e. it is a fundamental matrix with Y (0) =
I;. Then by the Liouville formula we have

t
det Y (t) = det Y (t) exp / trA(s)ds b, Vt.
to
Here A(s) is a matrix of the system (16), and trA

designates a trace of the matrix. If 7' is a period
of the system, then

det Y (T) = exp { f; trA(s)ds } = Ao —5as}

From the other hand, the determinant of the
monodromy matrix is equal to the product of all
multipliers, i. e.

detY(T) = p1 - p2 - p3 - pa-



To finish the proof one can compare the last two
formulas taking into account p; = 1. m

Take any solution y(t) of (16), it is known that
all solutions of (16) are bounded. Consider the
infinite series of vectors y(0), y(T), y(27), ...,
where T is a period of the system (16). Using
standard arguments, one can deduce that the
bounded sequence of vectors {y(kT)}{°5 has limit
points. Denote Yy a family of solutions the linear
system (16) with the origin from these limit points
att =0.

Lemma 5. Suppose that a solution y*(t) of (16)
belongs to the set Yy. Then along this solution the
function y3(¢) is zero, and y (¢) is a some constant,
i. e.

ys(t) =0, yi(t) =C, (20)

where C' is some constant. m

Proof. We know that along any solution of the
nonlinear closed loop system the function V satis-
fies to the passivity relation (13). The reader can
easily check that for the linearized system (16) an
appropriate modification of (13) will take place
with the term —y2(t) x ¢'(0) in the right hand
side of (13). So that ¢'(0) > 0, for any solution
of (16) from Yy the value of the component y3(¢)
should be identically zero. Due to (16), ¥1 = ys,
therefore along the solution y*(¢) the value of the
component yi(t) is just a constant. m

In other words, Lemma 5 shows that any solution
of (16) will only wind around some particular
solutions, which have to satisfy (20). The family
of these attractive solutions is not empty, the
trajectory (17) belongs to this family. If we are
able to show that this family consists of just one
trajectory (17) then we can conclude that the
rate of convergence to (17) in the closed loop
system is exponential. Otherwise, if there are
several linear independent elements of this family
then, apparently, the rate of convergence is not
exponential.

Among all solutions of the system (16) the con-

straints (20) separate those y(t) = [C,y2(t), 0, y4(?)]
which satisfy simultaneously to the differential

equation

a [1n]= s s [ 2] +[ato] @

and the algebraic relation

a1 ()C + as (t)ya(t) + aa(t)ya(t) =0, V. (22)

Multiplying the identity (22) by

6> + 63 cos gd(t)
6
and adding this product to the right hand side of
the equation (21), one gets the new version of the
equation (21)

d [y 0 L\ Tye
a[.w]:[%zqé’(”o v)

It is a quite interesting fact that the last system
is totally independent on the parameters of the

0
8sgcosai(t) | C-

02

controller. By changing variables z; := y2 + C,
29 := ya we get the Hill’s equation
d 21 01 21
— = 23
dt [zz] [p(t) O] [zz] (23)

with p(t) = 905—29 cos g4 (t). Furthermore, it is known
that the equation (23) has one periodic solution.
Then it is clear that this equation has the second

linear independent periodic solution.

Let us summarize the arguments: Suppose that
we found two independent solutions of the Hill’s
equation (23), either analytically or via simula-
tion. Then we have to substitute these solutions
into identity (22) with the objective to identify
those parameters k;, if any, which make (22) valid
only for the case: C = 0 and z(t) = ¢4(t),
22(t) = oj—zgsinqg(t). If these parameters k;, in
addition, satisfy to the inequalities (8), (11), they
will provide exponential convergence. m

4. SIMULATIONS

Here some experiments performed in Simulink, are
collected. The Pendubot parameters were taken
the same as in (Spong and Block, 1995). The
value of Ey was chosen two times larger then the
energy of the Pendubot in its upper equilibrium.
To observe the performance of the results we have
chosen two sets of the controller’s parameters:

K(].) : kl = ]., kz = 1501 (k1E+ 271'k3) = 22177,
kg = ]., k4 = 03, ¢($) =3z

K(Z) . kl = ]., kz = 1591]91E = 19918,
k3=1, k4=0, ¢(J}):$

Figures 1-2 shows the response of the closed loop
system with the controller K (1) for the initial
conditions

7:(0) = g, g2(0) = g

Figures 3-4 shows the response of the closed
loop system with the controller K (2) for the same
initial conditions. We would like to attract the
attention of the reader to Figures 2 and 4, where
the behavior of the energies are depicted. As seen,
a small discrepancy between the controllers K (1)
and K (2) leads to the essential improvement.

) q'l (0) = 003, q.z(t) =12.
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Fig. 1. The angle of the first link converges to 5
under the controller K(1)

the energy E/EQ
°
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time (s)

Fig. 2. The energy converges to FEy under the
controller K(1)
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Fig. 3. The angle of the first link converges to 5
under the controller K(2)

5. CONCLUSIONS

This paper is aimed at constructing and orbital
stabilizing periodic trajectories for the two-link
underactuated robot, called the Pendubot. These
desired periodic trajectories, except some patho-
logical cases, do not exist for the Pendubot with-
out a control action. It is shown how to construct
these motions via feedback. Then it is shown how
to make these motions orbitally asymptotically
stable. Furthermore, the linearized model of the
closed loop system around these trajectories, is
discussed. This issue seems to be important to im-
prove rate of convergence, which sometimes could
be poor.

the energy E/EQ
°

L L L L
60 70 80 90 100

L L L L
0 10 20 30 40

50
time (s)

Fig. 4. The energy converges to Ey under the
controller K(2)
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