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Abstract: We here analyze the parity space approach to fault detection and isolation in
a stochastic setting. Using a state space model with both deterministic and stochastic
unmeasurable inputs we show a formal relationship between the Kalman filter and the parity
space.

Based on a statistical fault detection and diagnosis algorithm, the probability for incorrect
diagnosis is computed explicitly, given that only a single fault with known time profile has
occurred. An example illustrates how the matrix of diagnosis probabilities can be used as a
design tool for performance optimization with respect to, for instance, design variables and
sensor placement and quality.
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1. INTRODUCTION Structured residuals for L = 2
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1r --- -2
The parity space approach to fault detection (Basseville / \ '
and Nikiforov, 1993; Chow and Willsky, 1984; Ding 0 ”
etal, 1999; Gertler, 1997; Gertler, 1998) is an elegant  _; ‘ ‘
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and general tool for additive faults in linear systems
and is based on intuitively simple algebraic projec-
tions and geometry. It provides a tool to compute a
residual vector that is zero when there is no fault in
the system and reacts to different faults in different
patterns, enabling a simple algorithm for diagnosis
(deciding which fault actually occurred). Exampleson ‘ ‘ ‘
simulated data often show very good results. Consider °© 0 20 30
for instance Figure 1, where a DC motor is subject
to first an offset in control input and then an offset in
velocity sensor.

Structured residuals for L = 2 with measurement noise (SNR=221)

40 50 60 70 80

Fig. 1. Parity space residual for a DC motor, as de-
scribed in Section 7, subject to first a input volt-
age offset and then a sensor offset. The two

The upper plot shows how structured parity space residuals are designed to be non-zero for only

residuals correctly points out which fault has occurred. one fault each. The lower plot illustrates ex-

A main drawback is that the approach does not take tremely high sensitivity in residuals to measure-

measurement errors and state noise into consideration = ment noise (SNR=221).

as in the classical Kalman filter literature. The lower

plot in Figure 1 illustrates the high sensitivity to even We here mix the linear state space models used in

quite a small measurement noise. fault detection and Kalman filtering, treating deter-



ministic and stochastic disturbances in different ways. signals. Introducing appropriate Hankel matridés
Previous work in this direction include (Keller, 1999), for an arbitrary input signak and an observability
(Basseville and Nikiforov, 1993) (Ch. 7) and (Gertler, matrix O, it is easily shown that (1) can be written
1998) (Ch. 11). Related ideas using principal compo- as
nent analysis are found in the chemical diagnosis lit-

erature as (Chianet al,, 2001; Dunia and Qin, 1998) Yo — HuUp =

This work is a continuation of (Gustafsson, 2001), Oxipy1+ HaDy + Hp Fy + H,V + E;. (2)
where an additive fault was included in an augmentedwhere

state vector, and observability of the fault was used C D 0 0
as thg tool to assess dlagnosaplhty. In. this paper, an CA CB D 0
explicit expression foP*? = P(diagnosisj| fault 7) 0= ) , H= _

is given for any parity space, and the parity space is : -0
optimally designed to minimize these probabilities in CAF! CAY2B ... CB D
order to improve sensitivity issues in diagnosis. The 3)

approach relies on spatiahdtemporal whitening of  pefine 4 residual to be used for detection and diagno-
the parity space residuals.

sis as
re = w’ (Yy — HyUy) (4a)
_ T
2. STOCHASTIC PARITY SPACES =w (Ozt—ry1 + HaDy + Hp Fy + H, Vi + Ey)
=w" (H; F, + H,V; + Ey). (4b)
The linear system is here defined as the state spacene point here is that; is designed to belong to
model the parity space, defined by” [©0 H,] = 0. That

Toi1 =Aty + Bugus + Bady + Brofo + Bu vy is, t.h_e_parity space is defir)eq to_ be insensitive.to
—Cyy + Dy gtig + Do ydy + Dy 1 fs + €. (1) _the |_n|t|al state and determl_nl_s_tlc disturbances, which
Yt =ty wttht T d 0 T e T O implies thatr, = 0 for any initial statex;_;; and
The inputs are of four different categories: any disturbance sequendg, k =t — L+ 1,...,t,
provided that there is no stochastic term presept{
0,vg = 0fork =t—L+1,...,t) and no fault,
fk=0,k=t—L+1,...,t. Any deviation from zero
is either due to the noise or one of the possible faults,
and the diagnosis task is to distinguish these causes.

e Deterministic known input:, as is common in
control applications.

e Deterministic unknown disturbande, as is also
common in control applications.

e Deterministic unknown fault inpuf;, which is
used in the fault detection literature. We here The maximal dimension of the residual vector is given
assume thay, is either zero (no fault) or pro- by
portional to the unit vectoff; = m,f?, where
f? is all zero except for elememtwhich is one.
Exactly which part of the system faultaffects Here the size of any signal, is denoted as;, =
is determined by the corresponding columns in dim(s;). Equality with the lower bound holds if the
By andDy ;. matrix [O H,4| has full column rank. This shows that a

e Stochastic unknown state disturbancge and parity space always existaméx,, n,, > 0) if there are
measurement noise, as are used in a Kalman more observations than disturbancesLifs chosen
filter setting. There is an ambiguity of the inter- large enough.
pretations ofv, andd;. We might treatv; as a
deterministic disturbance, but in many cases this

L(ny —ng) —ng < maxn, < Lny, —ng

Another approach, not pursued here, is to agalyt
leads to an infeasible problem where no parit decoupling where each residual is designed sepa-
P Party ately by the conditionv” [0 Hy HfF~] = 0. Here

space exists. Both, ande, are here assumed to_ F~%is a fault vector that excites all faults except for
be independent and Gaussian (for the anaIyS|s)fau|tZ.

with zero mean and covariance matri¢gsand
R;, respectively.
o The initial state is treated as an unknown vari- 3. PROBLEM FORMULATION FOR A SPECIAL
able, in contrast to the Kalman filter literature CASE
where it is assumed Gaussian.

Traditionally, either a stochastidy = 0) or a deter- L€t us consider the case of a scalar measurement and
ministic (v; = 0,e; = 0) framework is used in the @ = 0, in which case we can write the observations as

literature, but here we aim to mix them and combine ¥ = Y:—HU; where the components are independent
the theories. stochastic variables with

— _ 2
We next formulate the diagnosis task as a recursive E(yr) = my, Var(y) = oj.
problem applied to a sliding window. Stadksignal Assume for the moment that the fault magnitude is

values to defind; = (y ;. ,,...,y¢)" etc.for all constantn; = m. With a Gaussian assumption (not



needed for this discussion indeed), we can wyjtec where
N(m,o?). Let u be a vector with all elements equal S=H, (I, ®Q)H' +I,®R @

tom. A general linear estimator is given by . _ o
i = WY € N(w” 1, w” diag(o?)w) That is, each fault |§} mapped onto a vectorwith
’ k7= a covariance matrix* Sw. The case of non-constant
Unbiasedness is imposed by the constraihtw;, = fault magnitude is commented on in Algorithm 2. We
1. This expression can be normalized to can normalize the residual distribution to obtain a min-
. _ A _ _ imum variance residual, which will enable probability
(w” diag(of)w) ™ 2wy = @Y € N(@"pi, ). calculations in Section 6, as
This expression can be used as a test statistic to test if, Tq \—1/2 Tq N\—1/2, T
. . = S = S Y — H,U,
the mean is non-zero. This leads to thest powerful (w? Sw)™" u,_w/( K )

test wherew can be expressed as @T ®)
w = arg max(w’ diag(o?)w)  w’ w, (5) _ .
w in which case we get
subject to the unbiased conditidn, wi = 1. A first (Fo|mf) = @ (HV; + E; + meFi) (92)

try is to use the sample moving average (MA) by o ; _,L.
letting wy, = 1/L, which gives € N(mw" HfF*,I) = N(mj*,I) (9b)

1 202
~MA _ ( MA\Ty- __ k
mYe = (w )Y—EE ykeN(m, LQ)'

However, the optimal solution to (5) is to use the
minimum variance (MV) estimate

ﬁi
The uncertainty in the residual is now symmetric.
More specifically, the covariance ellipsoid aroyuid
now becomes a circle around. See Figure 2 for an

illustration. We can now formulate the design task as:
MV)TY _ Y Yk/ok (62)

A MV .
m — (w Structured Residual , L=2 Normalized Structured Residual L=2
1 Of 9
L Z / 1.5
eEN|lm ———]. 6b 4
(nsimp) @ T
N2 o
at L Z o-i 1 1 03
One can show thﬂ(Z VERE < 4= with equality ) . 0
if and only if o, = o are all constant, regardless of the
choice ofL. R 0 ) 6 a 15

aIN)

The corresponding residuglsubject to the constraint
Var(r) = 1, for non-zero mean detection is thus
r=w!Y, where

Fig. 2. Original and normalized structured residual
fault pattern with uncertainty ellipsoids for fault 1
and 2, respectively. Solid line is for unnormalized

. residuals, and dashed line after normalization.

VLoy, The dashed line is the optimal decision region.

This minimum variance principle is exactly what will

be used for the parity space design. The literature sug-_ . . ) ) ) ]

gests to further low-pass filter the residuals using IR Definition 1. The normalized parity space is defined

filters (yielding what is sometimes referred to as expo- 25

nential window moving average (EWMA)). However, 7, = @? (Y; — H,Uy), 0w’ = (w’ Sw)~ 20T,

this basically corresponds to:a with a larger time (10)

window L and improves computational complexity

rather than performance. As a conclusion, a minimum
variance unbiased estimator corresponds to the opti-
mal test statistic for non-zero mean detection.

1

Wy =

for any parity space’, whereS is defined in (7). The
parity space is unique up to a multiplication with a
unitary matrix. We calio” H; = (w” Sw)=/2w’ H;
theFault to Noise RatidFNR), since it explicitly tells
us how much each fault is amplified relative to other

4. STOCHASTIC ANALYSIS OF RESIDUAL faults.

To simplify the notation, assume time invariant covari- one interpretation of this definition is that the parity
ance matricesCov(E;) = I, ® RandCov(Vi) =  gpace residual is whitened spatially and temporally.
I, © Q, respectively ¢ denotes the Kronecker prod- \ye stress that a transformation of the residual space
uct). A unity fault f* (|| /*|| = 1) with constant mag-  affects how the fault vectors look like, but not the
nituderm gives a fault vectoF; = mF"in(2) andwe  gapjlity to make diagnosis. The point to keep in mind

have is that there are many obtainable parity spaces, the
(re|mf%) = w? (H,V; + E; + mH;F") sliding window sizel affects its dimension,. and the
e N(mw” HyF', w7 Sw) weighting matrixw its stochastic properties. The latter

requires stochastic analysis, and here we get help from
m the Kalman filter theory.



5. RELATION TO THE KALMAN FILTER

One interpretation of the Kalman filter is that it com-

putes the minimum variance estimate of the state vec-
tor, given the measurements available. One character-

ization of this is that thénnovationg(residuals in our
setting) are independently distributed Gaussian vari-
ables. Let us reformulate the Kalman filter and pose
the following problem: What is the minimum variance
estimate of the state,, ¥k = t — L + 1,t — L +
2,...t, given the observationg., k =t — L+ 1,t —

L + 2,...t. The solution can be implemented by the
Kalman smootheiinitialized at timet — L + 1, using
Pi_1+1 = oo x I, or formally more correct, using
the information filter withP,_", . | = 0. Another more
direct approach is to use the signal model (2).

The sliding window Kalman filterin (Gustafsson,
2001) is here re-phrased using the following notation:
At denotes the pseudo-inversé” A)~! AT with the
propertyAT A = I. The orthogonal projection matrix
Atisdefinedastt = I1-A(ATA)71AT = - AAT
with the propertiesA+ A+ = AL (projection) and
A+A = 0. We define a row basis fodt (square
matrix) as the null space ol and denote it byV 4
(thick matrix). Note that the parity space now can be
writtenw” = Nog,]-

Generally, a linear state estimator can be written
& 41 = K(Y; — HU) € N(2s_py1, KSKT).
It generates residuals as
e =Y, =Y =Y, — Ok 1 — H,U,
= - OK)(Y; — H,Uy)
= (I — OK)(H4D; + H,V; + E; + HymF")
€ N((I — OK)(HqDy + HymF"),
(I - OK)S(I — OK)").
The link to the normalized minimum variance parity
space follows in three steps:
1. The minimum variance state estimator (the Kalman

filter) is derived for a sliding window.
2. The size of the prediction error vectey is de-

of K will give a larger covariance matrix far,_r 11,
and thus produce less efficient residuals. The Kalman
filter prediction errors are distributed as

efF eN((I —0(0TS7r0) 0TS

- (H4Dy + HymF"),

S —0OTsto)y~1oT).
Now, note that since the data projection matrix
WL, 21— 0(0TS10)~10T S~ is singular, the
covariance matrix of the prediction errors is singular,
and there are many linear combinations=¢f" that
are always zero, independent of the data. By introduc-
ing a basisw’.,. for the row space ofV'} .., we get a
residual generatot, = wk . (Y; — H,U;) thatis low-
dimensional but still contains all information relevant
for diagnosis.

The parity space and Kalman filter are related as
follows:

e The parity space design in (4) is unconstrained,
while it in this section is of the form of a row
basis forl — OK, whereK defines an unbiased
state estimator.

The observer«,;s) and Kalman filter {xr)
automatically compute a residual space for the
case of no disturbancB; = 0, where the latter
gives minimum variance residuals.

Sincer; = wk, (Y;—H,U;) has the same size as
the parity space residual defined in (4) (namely
Ln, — ny) and it does not depend on the initial
state, it is by definition a parity space residual.
Since it is also minimum variance, the whitened
version must coincide with thg in (9b) up to a
unitary transformation.

The Kalman filter innovation can be transformed
to a parity space where also the disturbance is
decoupled (besides the initial state), by another
projectioni; = (wkp Hy)* 7.

6. DIAGNOSIS ALGORITHM

- S1F = ST
creased, where purely deterministic parts are removed SINce (gt|f = 0) < N(0, I) we have(r, 7| f =
This yields the minimum variance parity space resid- 0) € X" (7). Thex* test provides a threshold for

ualr, = w? (Y, — H,Uy). (Itis a parity space, since
ry = 0 whendy, fi, e;, v; are all zero.)

3. The residual is whitened spatially and temporally,
which givesr;.

The Kalman filter state estimate is by definition
the minimum variance estimate and requires pre-
whitening of data, so first we normalize (2),

STYV2(y, — HU,) =
S™Y2(Ox, 41+ HaDy+ H,V;i + E;+ HymF?),
and we get

KKF _ (Sil/QO)T _ (OTS710)71>OT571/2'

We can here note that ttebserver approachwhere
Ko = 0 = (0T0)~1)OT, and all other choices

detection, and fault isolation is performed by taking
the closest fault vector. The following algorithm is
well-known in the statistical literature:

Algorithm 1. On-line diagnosis
1. Compute a normalized parity spacee.g.(8).
2. Compute recursively:

Residual: 7 = w’ (Y; — HyUy)
Detection: 77 > h
= i
Isolation: ¢ = argmin ||# - /f—t||2
A (|

= arg min angle (7, i)
K3

whereangle(7, ji*) denotes the angle between the two
vectors#; andzi‘. A detection may be rejected if no



suitable isolation is foundnin; angle(7;, i*) is too 3. The probability of incorrect diagnosis is approxi-
large) to improve false alarm rate. mately

Prob(diagnosis i|fault m f7)

For diagnosabilityof single faults, the only require- 1 ] (@, @+ i) , _
ment is that all faults are mapped to different direc- = gerfe (m W= (i’ + 1) )
tions (7 + pt, pd + pt)

. _ . Herem denotes the magnitude of the fault. If this is
In the two-dimensional residual space, as the con-not constant, we replage = w? Hy F' in (9b) with
sidered DC motor example, t_he probability for false ;i — o Hydiag(my_p11,...,m:)F?andletm = 1.
alarm, Pr 4, (incorrect detection) can be computed

explicitly as P4 = e~"°, which means that the - h faults. thi o
threshold design is to choosBr4 and then let- or more than two faults, this expression is an approx-

ting h = \/—2log(Pra). Note that the true false imation but as in modulation theory generally quite
alarm rate may be lower if we reject alarms where & 900d one. The approximation becomes worse when
min; angle(7, ii') is too large. A more precise anal- there are several conflicting faults, which means that

ysis is given below. there are two or more fault vectors in about _the same
direction. Note that the Gaussian assumption using
We can interpret the diagnosis step as a classificationerfc is justified by the central limit theorem for large
problem, and compare it to modulation in digital com- 1, due to the averaging inherentir (E; + H,V;).
munication. Performance depends on the SNR, which
in this context often is denote%. SNR here corre-
sponds to FNRm||||. In modulation theory, using P(3) = Prob(diagnosis i[fault f7),i # j
an additive Gaussian error assumption, it is straight- plUd) — 1 _ Z plid) (11)
forward to compute the risk for incorrect symbol de- e
tection. We will here extend these expressions from

regular 2D (complex plane) patterns to general vectors't‘ tells us everything about fault association probabili—
in R ties for normalized faults» = 1, and the off-diagonal

elements are monotonically decreasing functions of
The risk of incorrect diagnosis can be computed ex- the fault magnituden.
actly in the case of only two faults as follows, using the . o
Gaussian noise assumption. It relies on the SyrnmetriCFurthermore, in the classification we should allow the

distribution of7;, where the decision region becomes Non-faulty class (0), wherg = 0, to decrease the
a line, as illustrated by the dashed lines in Figure 2. false alarm rate by neglecting residual vectors, though

The first step is a change of coordinates to one whergh@ving large amplitude, being far from the known
one axis is perpendicular to the decision plane. The fault vectors. The miss-classification probabilities are

second step is to marginalize all dimensions exceptcOMPUted in a similar way as

the one perpendicular to the decision plane. All these ) ] ; 1 m|| ||
marginals integrate to one. The third step is to evaluate P(diagnosis Ofault f7) = Qerfc 5 (12a)

We can now define the diagnosability matixas

the Gaussian error function. Here we use the (Matlab) 0,0) _ ©0.5)
definition pOY =1 — Z POD < Ppy. (12b)
J
1 2
erfe(z) =2 e /24y
(=) /a: V2T
7. EXAMPLE

The result inR? (cf. Figure 2) can be written

Consider a sampled state space model of a DC motor
with continuous time transfer function

1 L0y —
gerte (mll sin(*5)) Gl — L L
s(s+1) s2+s

In the general case, the decision line becomes a planeyhe state variables are angie | and angular velocity
and the line perpendicular to it is given by the projec- (;2y of the motor. The derivation of the corresponding

Prob(diagnosis i|fault mf7) =

tion distance to the intermediate lige + /i* as state space model is straightforward, and can be found
. <ﬁ1 - (it @t + p2) . ﬁ2)> |r::ir1r]);;(ra\>/(;tl)1?05|3 Zc;ntri\?:atsheory. Sampling with sam-
(ﬁl +p/27p/1 +ﬂ2) p s — Y. g
and we get the following algorithm: A= ((1) 8238;) , B, = (8338?7’) , B, = (8(1)3)
Algorithm 2. Off-line diagnosis analysis B, — (0) , By — (0~07O3 0) C= (1 0)
1. Compute a normalized parity spacee.g.(8). 0 0.3297 0 01

2. Compute the normalized fault vectois$ in the
parity space as in (9b).
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It is assumed that botl; and z, are measured. 10°

Here we have assumed that the fault is either an o
input voltage disturbance (or torque disturbance) or - - P(0]2)
a velocity sensor offset. The matrices in the sliding 10° P,
window model become fof. = 2:
10 0 0 g .
0 1 0 0 g0
O=1103207| ™= |o007030]" -
0 0.6703 0.3297 0 |
0 000
0 100
= 0.0703 000 [ 107202 25 3 35 4 45 5 55 6
0.3297 00 1 ' Slid'ing window IengjthL ’
and Fig. 4. Miss-classification probabilities in diagnosis as

ol = Nio g = a function of sliding window length.

—0.6930 —0.1901 0.6930 —0.0572 As a final illustration, one can investigate how much
( 0.0405 —0.5466 —0.0405 0.8354 ) (13) we lose in performance using a cheaper velocity sen-

) ) ) sor with variance 10 instead of 1, and the result is
The residual space with structured residuals, as shown

in Figure 2, is P(1:2,1;2) _ 0.95 0.05 '
0.05 0.95
w! = (_01 _82;9); é (1)) . (14)  The ten times larger miss-classification probabilities
S can be compensated for by sacrificing a short delay

The difference of the parity spaces generated by (13)for detection and using a longer sliding window.
and (14), respectively, is illustrated in Figure 2. The
faults in the normalized parity space are not orthog-
onal, but on the other hand the decision region is
particularly simple.

8. CONCLUSIONS

We have here introduced the normalized parity resid-

The probability matrix (11) is here ual space for additive faults in linear stochastic sys-
p21) _ 0.995 0.005 tems. It was shown how this can be .derlved in a
= 10.005 0,995/ Kalman filter framework. We have derived explicit

o ) . formulas for miss-classification probabilities as a defi-
Note that this is independent of the choice of orig- nition of diagnosability, and these depend critically on
inal parity space (13), (14) or the Kalman filter. By e fault to noise ratio. An example illustrated how the
increasing the length of the sliding window o= 3,  giagnosability matrix can be used as a design tool with
we get a much better performance with a probability respect to sensor quality and design parameters.
matrix that is very close to diagonal and a very small
missed detection probability. The confidence circles of
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