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Abstract: We here analyze the parity space approach to fault detection and isolation in
a stochastic setting. Using a state space model with both deterministic and stochastic
unmeasurable inputs we show a formal relationship between the Kalman filter and the parity
space.
Based on a statistical fault detection and diagnosis algorithm, the probability for incorrect
diagnosis is computed explicitly, given that only a single fault with known time profile has
occurred. An example illustrates how the matrix of diagnosis probabilities can be used as a
design tool for performance optimization with respect to, for instance, design variables and
sensor placement and quality.
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1. INTRODUCTION

The parity space approach to fault detection (Basseville
and Nikiforov, 1993; Chow and Willsky, 1984; Ding
et al., 1999; Gertler, 1997; Gertler, 1998) is an elegant
and general tool for additive faults in linear systems
and is based on intuitively simple algebraic projec-
tions and geometry. It provides a tool to compute a
residual vector that is zero when there is no fault in
the system and reacts to different faults in different
patterns, enabling a simple algorithm for diagnosis
(deciding which fault actually occurred). Examples on
simulated data often show very good results. Consider
for instance Figure 1, where a DC motor is subject
to first an offset in control input and then an offset in
velocity sensor.

The upper plot shows how structured parity space
residuals correctly points out which fault has occurred.
A main drawback is that the approach does not take
measurement errors and state noise into consideration
as in the classical Kalman filter literature. The lower
plot in Figure 1 illustrates the high sensitivity to even
quite a small measurement noise.
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Fig. 1. Parity space residual for a DC motor, as de-
scribed in Section 7, subject to first a input volt-
age offset and then a sensor offset. The two
residuals are designed to be non-zero for only
one fault each. The lower plot illustrates ex-
tremely high sensitivity in residuals to measure-
ment noise (SNR=221).

We here mix the linear state space models used in
fault detection and Kalman filtering, treating deter-
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ministic and stochastic disturbances in different ways.
Previous work in this direction include (Keller, 1999),
(Basseville and Nikiforov, 1993) (Ch. 7) and (Gertler,
1998) (Ch. 11). Related ideas using principal compo-
nent analysis are found in the chemical diagnosis lit-
erature as (Chianget al., 2001; Dunia and Qin, 1998)
This work is a continuation of (Gustafsson, 2001),
where an additive fault was included in an augmented
state vector, and observability of the fault was used
as the tool to assess diagnosability. In this paper, an
explicit expression forP i,j = P (diagnosisj| fault i)
is given for any parity space, and the parity space is
optimally designed to minimize these probabilities in
order to improve sensitivity issues in diagnosis. The
approach relies on spatialand temporal whitening of
the parity space residuals.

2. STOCHASTIC PARITY SPACES

The linear system is here defined as the state space
model

xt+1 =Atxt +Bu,tut +Bd,tdt +Bf ,tft +Bv,tvt

yt =Ctxt +Du,tut +Dd,tdt +Df ,tft + et. (1)

The inputs are of four different categories:

• Deterministic known inputut, as is common in
control applications.
• Deterministic unknown disturbancedt, as is also

common in control applications.
• Deterministic unknown fault inputft, which is

used in the fault detection literature. We here
assume thatft is either zero (no fault) or pro-
portional to the unit vectorft = mtf

i, where
f i is all zero except for elementi which is one.
Exactly which part of the system faulti affects
is determined by the corresponding columns in
Bf ,t andDf ,t.
• Stochastic unknown state disturbancevt and

measurement noiseet, as are used in a Kalman
filter setting. There is an ambiguity of the inter-
pretations ofvt anddt. We might treatvt as a
deterministic disturbance, but in many cases this
leads to an infeasible problem where no parity
space exists. Bothvt andet are here assumed to
be independent and Gaussian (for the analysis)
with zero mean and covariance matricesQt and
Rt, respectively.
• The initial state is treated as an unknown vari-

able, in contrast to the Kalman filter literature
where it is assumed Gaussian.

Traditionally, either a stochastic (dt = 0) or a deter-
ministic (vt = 0, et = 0) framework is used in the
literature, but here we aim to mix them and combine
the theories.

We next formulate the diagnosis task as a recursive
problem applied to a sliding window. StackL signal
values to defineYt = (yTt−L+1, . . . , y

T
t )T etc. for all

signals. Introducing appropriate Hankel matricesHs

for an arbitrary input signals and an observability
matrix O, it is easily shown that (1) can be written
as

Yt −HuUt =
Oxt−L+1 +HdDt +Hf Ft +HvVt + Et. (2)

where

O =


C
CA

...
CAL−1

 , H =


D 0 · · · 0
CB D 0

. . .
. . . 0

CAL−2B · · · CB D

 .

(3)

Define a residual to be used for detection and diagno-
sis as

rt = wT (Yt −HuUt) (4a)

= wT (Oxt−L+1 +HdDt + Hf Ft +HvVt + Et)

= wT (Hf Ft +HvVt + Et). (4b)

The point here is thatrt is designed to belong to
the parity space, defined bywT [O Hd] = 0. That
is, the parity space is defined to be insensitive to
the initial state and deterministic disturbances, which
implies thatrt = 0 for any initial statext−L+1 and
any disturbance sequencedk, k = t − L + 1, . . . , t,
provided that there is no stochastic term present (ek =
0, vk = 0 for k = t − L + 1, . . . , t) and no fault,
fk = 0, k = t−L+1, . . . , t. Any deviation from zero
is either due to the noise or one of the possible faults,
and the diagnosis task is to distinguish these causes.

The maximal dimension of the residual vector is given
by

L(ny − nd)− nx ≤ max
w

nr ≤ Lny − nx

Here the size of any signalst is denoted asns =
dim(st). Equality with the lower bound holds if the
matrix [O Hd] has full column rank. This shows that a
parity space always exists (maxw nr > 0) if there are
more observations than disturbances, ifL is chosen
large enough.

Another approach, not pursued here, is to applyfault
decoupling, where each residual is designed sepa-
rately by the conditionwT [O Hd Hf F

−i] = 0. Here
F−i is a fault vector that excites all faults except for
fault i.

3. PROBLEM FORMULATION FOR A SPECIAL
CASE

Let us consider the case of a scalar measurement and
Q = 0, in which case we can write the observations as
Y = Yt−HUt where the components are independent
stochastic variables with

E(yk) = mk, Var(yk) = σ2
k.

Assume for the moment that the fault magnitude is
constantmk = m. With a Gaussian assumption (not



needed for this discussion indeed), we can writeyk ∈
N(m,σ2

k). Let µ be a vector with all elements equal
tom. A general linear estimator is given by

m̂ = wTY ∈ N(wTµ,wTdiag(σ2
k)w).

Unbiasedness is imposed by the constraint
∑

k wk =
1. This expression can be normalized to

(wTdiag(σ2
k)w)−1/2wTY

∆= w̄TY ∈ N(w̄Tµ, I).

This expression can be used as a test statistic to test if
the mean is non-zero. This leads to themost powerful
test, wherew can be expressed as

w = arg max
w

(wTdiag(σ2
k)w)−1wTw, (5)

subject to the unbiased condition
∑
k wk = 1. A first

try is to use the sample moving average (MA) by
lettingwk = 1/L, which gives

m̂MA = (wMA)TY =
1
L

∑
yk ∈ N

(
m,

∑
σ2
k

L2

)
.

However, the optimal solution to (5) is to use the
minimum variance (MV) estimate

m̂MV = (wMV )TY =
∑
yk/σk∑
1/σk

(6a)

∈ N
(
m,

L

(
∑

1/σk)2

)
. (6b)

One can show that L

(
∑

1/σk)2 ≤
∑

σ2
k

L2 with equality

if and only ifσk = σ are all constant, regardless of the
choice ofL.

The corresponding residualr, subject to the constraint
Var(r) = 1, for non-zero mean detection is thus
r = w̄TY , where

w̄k =
1√
Lσk

.

This minimum variance principle is exactly what will
be used for the parity space design. The literature sug-
gests to further low-pass filter the residuals using IIR
filters (yielding what is sometimes referred to as expo-
nential window moving average (EWMA)). However,
this basically corresponds to aw with a larger time
window L and improves computational complexity
rather than performance. As a conclusion, a minimum
variance unbiased estimator corresponds to the opti-
mal test statistic for non-zero mean detection.

4. STOCHASTIC ANALYSIS OF RESIDUAL

To simplify the notation, assume time invariant covari-
ance matricesCov(Et) = IL ⊗ R andCov(Vt) =
IL ⊗ Q, respectively (⊗ denotes the Kronecker prod-
uct). A unity faultf i (‖f i‖ = 1) with constant mag-
nitudem gives a fault vectorFt = mF i in (2) and we
have

(rt|mf i) = wT (HvVt + Et +mHf F
i)

∈ N(mwTHf F
i︸ ︷︷ ︸

µi

, wTSw)

where

S = Hv(IL ⊗Q)HT
v + IL ⊗ R. (7)

That is, each fault is mapped onto a vectorµi with
a covariance matrixwTSw. The case of non-constant
fault magnitude is commented on in Algorithm 2. We
can normalize the residual distribution to obtain a min-
imum variance residual, which will enable probability
calculations in Section 6, as

r̄t = (wTSw)−1/2rt = (wTSw)−1/2wT︸ ︷︷ ︸
w̄T

(Yt −HuUt)

(8)

in which case we get

(r̄t|mf i) = w̄T (HvVt + Et +mHf F
i) (9a)

∈ N(mw̄THf F
i︸ ︷︷ ︸

µ̄i

, I) = N(mµ̄i, I) (9b)

The uncertainty in the residual is now symmetric.
More specifically, the covariance ellipsoid aroundµi

now becomes a circle around̄µi. See Figure 2 for an
illustration. We can now formulate the design task as:
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Fig. 2. Original and normalized structured residual
fault pattern with uncertainty ellipsoids for fault 1
and 2, respectively. Solid line is for unnormalized
residuals, and dashed line after normalization.
The dashed line is the optimal decision region.

Definition 1. The normalized parity space is defined
as

r̄t = w̄T (Yt −HuUt), w̄T = (wTSw)−1/2wT ,
(10)

for any parity spacewT , whereS is defined in (7). The
parity space is unique up to a multiplication with a
unitary matrix. We callw̄THf = (wTSw)−1/2wTHf

theFault to Noise Ratio(FNR), since it explicitly tells
us how much each fault is amplified relative to other
faults.

One interpretation of this definition is that the parity
space residual is whitened spatially and temporally.
We stress that a transformation of the residual space
affects how the fault vectors look like, but not the
ability to make diagnosis. The point to keep in mind
is that there are many obtainable parity spaces, the
sliding window sizeL affects its dimensionnr and the
weighting matrixw its stochastic properties. The latter
requires stochastic analysis, and here we get help from
the Kalman filter theory.



5. RELATION TO THE KALMAN FILTER

One interpretation of the Kalman filter is that it com-
putes the minimum variance estimate of the state vec-
tor, given the measurements available. One character-
ization of this is that theinnovations(residuals in our
setting) are independently distributed Gaussian vari-
ables. Let us reformulate the Kalman filter and pose
the following problem: What is the minimum variance
estimate of the statexk, k = t − L + 1, t − L +
2, . . . t, given the observationsyk, k = t− L+ 1, t−
L + 2, . . . t. The solution can be implemented by the
Kalman smoother, initialized at timet− L+ 1, using
Pt−L+1 = ∞ × I, or formally more correct, using
the information filter withP−1

t−L+1 = 0. Another more
direct approach is to use the signal model (2).

The sliding window Kalman filterin (Gustafsson,
2001) is here re-phrased using the following notation:
A† denotes the pseudo-inverse(ATA)−1AT with the
propertyA†A = I. The orthogonal projection matrix
A⊥ is defined asA⊥ = I−A(ATA)−1AT = I−AA†
with the propertiesA⊥A⊥ = A⊥ (projection) and
A⊥A = 0. We define a row basis forA⊥ (square
matrix) as the null space ofA and denote it byNA
(thick matrix). Note that the parity space now can be
writtenwT = N[OHd].

Generally, a linear state estimator can be written

x̂t−L+1 = K(Yt −HuUt) ∈ N(xt−L+1,KSK
T ).

It generates residuals as

εt = Yt − Ŷ = Yt −Ox̂t−L+1 −HuUt

= (I −OK)(Yt −HuUt)

= (I −OK)(HdDt +HvVt + Et +HfmF
i)

∈ N((I −OK)(HdDt +HfmF
i),

(I −OK)S(I −OK)T ).

The link to the normalized minimum variance parity
space follows in three steps:
1. The minimum variance state estimator (the Kalman
filter) is derived for a sliding window.
2. The size of the prediction error vectorεt is de-
creased, where purely deterministic parts are removed.
This yields the minimum variance parity space resid-
ual rt = wT (Yt − HuUt). (It is a parity space, since
rt = 0 whendt, ft, et, vt are all zero.)
3. The residual is whitened spatially and temporally,
which givesr̄t.

The Kalman filter state estimate is by definition
the minimum variance estimate and requires pre-
whitening of data, so first we normalize (2),

S−1/2(Yt −HuUt) =

S−1/2(Oxt−L+1 +HdDt+HvVt+Et+HfmF
i),

and we get

KKF = (S−1/2O)† = (OTS−1O)−1)OTS−1/2.

We can here note that theobserver approach, where
Kobs = O† = (OTO)−1)OT , and all other choices

of K will give a larger covariance matrix for̂xt−L+1,
and thus produce less efficient residuals. The Kalman
filter prediction errors are distributed as

εKF
t ∈N((I −O(OTS−1O)−1OTS−1)

· (HdDt +HfmF
i),

S −O(OTS−1O)−1OT ).

Now, note that since the data projection matrix

WT
KF

∆= I − O(OTS−1O)−1OTS−1 is singular, the
covariance matrix of the prediction errors is singular,
and there are many linear combinations ofεKF

t that
are always zero, independent of the data. By introduc-
ing a basiswTKF for the row space ofWT

KF , we get a
residual generatorrt = wTKF (Yt −HuUt) that is low-
dimensional but still contains all information relevant
for diagnosis.

The parity space and Kalman filter are related as
follows:

• The parity space design in (4) is unconstrained,
while it in this section is of the form of a row
basis forI −OK, whereK defines an unbiased
state estimator.
• The observer (wobs) and Kalman filter (wKF )

automatically compute a residual space for the
case of no disturbanceDt = 0, where the latter
gives minimum variance residuals.
• Sincert = wTKF (Yt−HuUt) has the same size as

the parity space residual defined in (4) (namely
Lny − nx) and it does not depend on the initial
state, it is by definition a parity space residual.
Since it is also minimum variance, the whitened
version must coincide with thērt in (9b) up to a
unitary transformation.
• The Kalman filter innovation can be transformed

to a parity space where also the disturbance is
decoupled (besides the initial state), by another
projection¯̄rt = (wTKFHd)⊥r̄t.

6. DIAGNOSIS ALGORITHM

Since (r̄t|f = 0) ∈ N(0, I) we have(r̄Tt r̄t|f =
0) ∈ χ2(nr). Theχ2 test provides a thresholdh for
detection, and fault isolation is performed by taking
the closest fault vector. The following algorithm is
well-known in the statistical literature:

Algorithm 1. On-line diagnosis
1. Compute a normalized parity spacew̄, e.g.(8).
2. Compute recursively:

Residual: r̄t = w̄T (Yt −HUUt)

Detection: r̄Tt r̄t > h

Isolation: î = arg min
i
‖ r̄t
‖r̄t‖

− µ̄i

‖µ̄i‖‖
2

= arg min
i

angle(r̄t, µ̄i)

whereangle(r̄t, µ̄i) denotes the angle between the two
vectorsr̄t and µ̄i. A detection may be rejected if no



suitable isolation is found (mini angle(r̄t, µ̄i) is too
large) to improve false alarm rate.

For diagnosabilityof single faults, the only require-
ment is that all faults are mapped to different direc-
tionsµ̄i.

In the two-dimensional residual space, as the con-
sidered DC motor example, the probability for false
alarm,PFA, (incorrect detection) can be computed
explicitly as PFA = e−h

2
, which means that the

threshold design is to choosePFA and then let-
ting h =

√
−2 log(PFA). Note that the true false

alarm rate may be lower if we reject alarms where
mini angle(r̄t, µ̄i) is too large. A more precise anal-
ysis is given below.

We can interpret the diagnosis step as a classification
problem, and compare it to modulation in digital com-
munication. Performance depends on the SNR, which
in this context often is denotedEbN0

. SNR here corre-
sponds to FNRm‖µ̄i‖. In modulation theory, using
an additive Gaussian error assumption, it is straight-
forward to compute the risk for incorrect symbol de-
tection. We will here extend these expressions from
regular 2D (complex plane) patterns to general vectors
inRnr .
The risk of incorrect diagnosis can be computed ex-
actly in the case of only two faults as follows, using the
Gaussian noise assumption. It relies on the symmetric
distribution ofr̄t, where the decision region becomes
a line, as illustrated by the dashed lines in Figure 2.
The first step is a change of coordinates to one where
one axis is perpendicular to the decision plane. The
second step is to marginalize all dimensions except
the one perpendicular to the decision plane. All these
marginals integrate to one. The third step is to evaluate
the Gaussian error function. Here we use the (Matlab)
definition

erfc(x) = 2
∫ ∞
x

1√
2π
e−x

2/2dx

The result inR2 (cf. Figure 2) can be written

Prob(diagnosis i|fault mf j) =
1
2

erfc
(
m‖µ̄j‖ sin(

αi − αj
2

)
)
.

In the general case, the decision line becomes a plane,
and the line perpendicular to it is given by the projec-
tion distance to the intermediate linēµ1 + µ̄2 as

m

(
µ̄1 − (µ̄1, µ̄1 + µ̄2)

(µ̄1 + µ̄2, µ̄1 + µ̄2)
(µ̄1 + µ̄2)

)
and we get the following algorithm:

Algorithm 2. Off-line diagnosis analysis
1. Compute a normalized parity spacew, e.g.(8).
2. Compute the normalized fault vectors̄µi in the
parity space as in (9b).

3. The probability of incorrect diagnosis is approxi-
mately

Prob(diagnosis i|fault mf j)

=
1
2

erfc
(
m

∥∥∥∥µ̄j − (µ̄j , µ̄j + µ̄i)
(µ̄j + µ̄i, µ̄j + µ̄i)

(µ̄j + µ̄i)
∥∥∥∥)

Herem denotes the magnitude of the fault. If this is
not constant, we replacēµi = w̄THf F

i in (9b) with
µ̄i = w̄THf diag(mt−L+1, . . . ,mt)F i and letm = 1.

For more than two faults, this expression is an approx-
imation but as in modulation theory generally quite
a good one. The approximation becomes worse when
there are several conflicting faults, which means that
there are two or more fault vectors in about the same
direction. Note that the Gaussian assumption using
erfc is justified by the central limit theorem for large
L, due to the averaging inherent inwT (Et +HvVt).

We can now define the diagnosability matrixP as

P (i,j) = Prob(diagnosis i|fault f j), i 6= j

P (j,j) = 1−
∑
i6=j

P (i,j). (11)

It tells us everything about fault association probabili-
ties for normalized faultsm = 1, and the off-diagonal
elements are monotonically decreasing functions of
the fault magnitudem.

Furthermore, in the classification we should allow the
non-faulty class (0), wheref = 0, to decrease the
false alarm rate by neglecting residual vectors, though
having large amplitude, being far from the known
fault vectors. The miss-classification probabilities are
computed in a similar way as

P (diagnosis 0|fault f j) =
1
2

erfc
(
m‖µ̄j‖

2

)
(12a)

P (0,0) = 1−
∑
j

P (0,j) < PFA. (12b)

7. EXAMPLE

Consider a sampled state space model of a DC motor
with continuous time transfer function

G(s) =
1

s(s+ 1)
=

1
s2 + s

.

The state variables are angle (x1) and angular velocity
(x2) of the motor. The derivation of the corresponding
state space model is straightforward, and can be found
in any textbook in control theory. Sampling with sam-
ple intervalTs = 0.4 s gives

A =
(

1 0.3297
0 0.6703

)
, Bu =

(
0.0703
0.3297

)
, Bv =

(
0.08
0.16

)
Bd =

(
0
0

)
, Bf =

(
0.0703 0
0.3297 0

)
, C =

(
1 0
0 1

)
Du =

(
0
0

)
, Dd =

(
0
0

)
, Df =

(
0 0
0 1

)
.



It is assumed that bothx1 and x2 are measured.
Here we have assumed that the fault is either an
input voltage disturbance (or torque disturbance) or
a velocity sensor offset. The matrices in the sliding
window model become forL = 2:

O =


1 0
0 1
1 0.3297
0 0.6703

 , Hu =


0 0
0 0

0.0703 0
0.3297 0

 ,

Hf =


0 0 0 0
0 1 0 0

0.0703 0 0 0
0.3297 0 0 1

 ,

and

w̄T = N[O Hd] =(
−0.6930 −0.1901 0.6930 −0.0572
0.0405 −0.5466 −0.0405 0.8354

)
. (13)

The residual space with structured residuals, as shown
in Figure 2, is

wT =
(
−1 −0.3297 1 0
0 −0.6703 0 1

)
. (14)

The difference of the parity spaces generated by (13)
and (14), respectively, is illustrated in Figure 2. The
faults in the normalized parity space are not orthog-
onal, but on the other hand the decision region is
particularly simple.

The probability matrix (11) is here

P (1:2,1;2) =
(

0.995 0.005
0.005 0.995

)
.

Note that this is independent of the choice of orig-
inal parity space (13), (14) or the Kalman filter. By
increasing the length of the sliding window toL = 3,
we get a much better performance with a probability
matrix that is very close to diagonal and a very small
missed detection probability. The confidence circles of
the structured residuals in Figure 3 are more separated
than the ones in Figure 2.
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Fig. 3. Similar to Fig. 2, but withL increased from2 to
3. The circles are now more separated, decreasing
the risk of incorrect decisions.

Figure 4 shows a systematic evaluation of the design
parameterL. A largerL means that it takes a longer
time to get a complete window with faulty data, so
the delay for detection should increase withL. On
the other hand, the miss-classification probabilities
decreases quickly inL.
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Fig. 4. Miss-classification probabilities in diagnosis as
a function of sliding window length.

As a final illustration, one can investigate how much
we lose in performance using a cheaper velocity sen-
sor with variance 10 instead of 1, and the result is

P (1:2,1;2) =
(

0.95 0.05
0.05 0.95

)
.

The ten times larger miss-classification probabilities
can be compensated for by sacrificing a short delay
for detection and using a longer sliding window.

8. CONCLUSIONS

We have here introduced the normalized parity resid-
ual space for additive faults in linear stochastic sys-
tems. It was shown how this can be derived in a
Kalman filter framework. We have derived explicit
formulas for miss-classification probabilities as a defi-
nition of diagnosability, and these depend critically on
the fault to noise ratio. An example illustrated how the
diagnosability matrix can be used as a design tool with
respect to sensor quality and design parameters.
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