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Abstract: The generalized likelihood ratio (GLR) test has been studied for the
detection and estimation of a jump in linear systems, where the choices of the window
size for the online implementation and of the threshold have been recognized as key
problems. This paper proposes a deadbeat observer based GLR test for linear time
invariant (LTI) systems. The necessary window size is automatically determined and
is not greater than the McMillan degree of the system. Assuming noninformative prior
information for the size of the noise variance, a marginalized GLR test is also discussed
as the offline procedure to overcome the difficulty in the choice of the threshold.
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1. INTRODUCTION

The problem of detection and estimation of a
jump in linear systems has been extensively stud-
ied, see (Basseville and Nikiforov, 1993; Iser-
mann, 1984; Kerr, 1987; Willsky, 1976) for sur-
veys. One of the most powerful methods in jump
detection is the generalized likelihood ratio (GLR)
test proposed in (Willsky and Jones, 1976). The
GLR test applies to cases of a jump in the state
of linear systems, but it requires a linearly in-
creasing number of parallel filters and is com-
putationally intractable. An approximated sliding
window technique was also discussed in (Willsky
and Jones, 1976) to obtain a constant number of
filters, while the efficient choice of the window size
has been recognized as the problem. The threshold
depends on the noise variance and its choice has
been also recognized as the problem. An alterna-
tive approach to the GLR test is to assume nonin-

formative prior information for the scalar scaling
of the noise variance, then the log likelihood ratio
(LLR) can be computed by eliminating the scalar
scaling by marginalization (Gustafsson, 1996).

Before introducing a new approach, we summarize
the key points of the GLR test. Based on the state
estimation by the Kalman filter, the residual is
computed at each time instant. The residual does
not depend on the initial state and is independent
Gaussian sequence with/without the jump. If no
jump has occurred, the mean value of the residual
is 0. Once a jump occurs, the mean value of the
residual is linearly dependent on the jump at each
time instant, while the variance of the residual
is the same. This linear dependence of the mean
value can be computed utilizing the Kalman filter
gain. Since the LLR becomes a function of the
unknown jump and the unknown jump time, they
can be estimated by maximizing the LLR over a
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fixed interval. As already mentioned, the choices
of the window size and the threshold have been
recognized as key problems.

This paper proposes a deadbeat observer based
GLR test for linear time invariant (LTI) sys-
tems. Since the same relation between the residual
with/without jump exists for the residual gener-
ated by the deadbeat observer, the same proce-
dure follows for the GLR test. Compared with the
Kalman filter approach, it can be shown that the
small window size at most the McMillan degree
of the LTI system is enough for the detection.
Since the computation of the Kalman filter gain
is not necessary at each time instant, the new
approach would be more easily implemented for
the online processing. Since the new method does
not require a large window, it has the potential
to provide more accurate jump time estimate. If
the noise level is significantly small compared with
the jump, the new method also has the potential
to provide more accurate jump estimate, since
the Kalman filter approach essentially requires an
infinite window size for the exact jump estima-
tion, while the new approach only requires the
small window size. The variance of the residual,
however, may be larger than that of the Kalman
filter approach, and thus the new method would
be weak in detecting the small jump.

In addition to the above demerits, the LLR is
inversely proportional to the size of the noise
variance. So the prior information, which may
be unrealistic in several applications, on the size
of the noise variance is necessary to choose the
threshold. One approach to avoid this difficulty
is to assume noninformative prior information
for the size of the noise variance, then we can
marginalize this prior information. But it should
be noted that we need to discuss this marginalized
GLR test as the offline procedure, therefore the
choice of the window size is still a problem in this
test.

This paper is organized as follows. In Section 2,
we review the deadbeat observer for LTI systems
and formulate the problem. In Section 3, we solve
the problem over maximizing the LLR function.
In Section 4, we discuss the marginalization. In
Section 5, we illustrate the numerical example to
demonstrate the effectiveness of our method. In
Section 6, we give the conclusions.

The notations are as follows. := denotes the equal
by definition. R

n×m denotes the space of n × m

real matrices. R+ denotes the set of nonnegative
numbers. PT denotes a transpose of a matrix
P ∈ R

n×m. P > 0 denotes a positive definite
matrix for a symmetric matrix P ∈ R

n×n. E[ · ]
denotes the expectation for the random variable.

2. DEADBEAT OBSERVER AND PROBLEM
FORMULATION

Consider the following discrete-time LTI system

x(t + 1) = Ax(t) + Gw(t) + δt0,t ν (1)

y(t) = Cx(t) + v(t) (2)

where x(t) ∈ R
n is the state with initial condition

x(0). In addition y(t) ∈ R
q is the observation, and

{w(t)} and {v(t)} are independent, zero mean,
Gaussian sequences with E[w(t)w(t)T ] = W > 0
and E[v(t)v(t)T ] = V > 0. The term δt0,t ν

represents a jump in the state. Here t0 is an
unknown positive integer, which assumes a value
if a jump occurs and takes the value +∞ if there
is no jump. Also δi,j is the Kronecker delta and ν

is the unknown size of the jump.

The problem is to detect and estimate the jump
ν and the jump time t0 from the given sequence
of observations {y(t)}.

Assuming that the system is observable, one may
pick a matrix H such that

Λ := A − HC (3)

is nilpotent by the pole shifting. Then there exists
a positive integer λ(≤ n) such that

Λλ−1 6= 0 and Λλ = 0. (4)

Here we denote 00 = I for simplicity. Now con-
sider the deadbeat observer of the form

x̂(t + 1) = Ax̂(t) + Hε(t) (5)

ε(t) := y(t) − Cx̂(t) (6)

where x̂(t) is the state estimate and ε(t) is the
residual. Let

e(t) := x(t) − x̂(t)

denote the state estimation error. Then, for any
initial value x(0), the state estimation error satis-
fies

e(λ) =

λ
∑

t=1

Λt−1(Gw(λ − t + 1) + Cv(λ − t + 1))

at time λ, therefore the initial value x(0) does
not effect the state estimation error e(t) for time
t ≥ λ. Since {w(t)}, {v(t)} are independent,
zero mean Gaussian sequences, the residual {ε(t)}
is also an independent, zero mean, Gaussian se-
quence with

E[ε(t)ε(t)T ]

= V +
λ
∑

t=1

CΛt−1(GWGT + CV CT )(ΛT )t−1CT

=: S (7)

for t ≥ λ. For the initialization it is also assumed
that the jump occurs after time λ, i.e. t0 ≥ λ.



3. GLR TEST

In order to detect and estimate the jump ν and
the jump time t0, we will consider the hypotheses:

H0: no jump occurred
H1: jump occurred

at each time t = τ . First we consider the effect
of jump ν for the residual. Let ε0(t) denote the
no-jump case (H0, i.e. τ 6= t0), and denote ε1(t)
as the jump case (H1, i.e. τ = t0). Then we have

ε1(t) =

{

ε0(t) + ϕT
τ (t)ν for τ + 1 ≤ t ≤ τ + λ

ε0(t) for τ + λ + 1 ≤ t

where

ϕT
τ (t) := CΛt−τ−1. (8)

It follows that the residual does not contain any
information about the jump ν after time t = τ+λ.
So we will observe the residual over time interval
τ + 1 ≤ t ≤ τ + λ. Over this time interval, the
residual ε(t) is Gaussian with a zero mean and
with variance S if H0, and is Gaussian with mean
ϕT

τ (t)ν and with variance S if H1. Namely,

p(ε(t)|H1) =
1

√

(2π)q det S
exp (−R(ν, τ ; t))

p(ε(t)|H0) =
1

√

(2π)q det S
exp

(

−R̃(t)
)

where

R(ν, τ ; t)

:=
1

2

(

ε(t) − ϕT
τ (t)ν

)T
S−1

(

ε(t) − ϕT
τ (t)ν

)

R̃(t) :=
1

2
εT (t)S−1ε(t).

The LLR between H0 and H1 can be written as

l(τ, ν) := log

∏τ+λ

t=τ+1
p(ε(t)|H1)

∏τ+λ

t=τ+1
p(ε(t)|H0)

=

τ+λ
∑

t=τ+1

(

R̃(t) − R(ν, τ ; t)
)

(9)

We estimate the jump ν and the jump time t0 by
maximizing the LLR. First we estimate the jump
ν as a function of the jump time t0. It follows from
the observability condition that

τ+λ
∑

t=τ+1

ϕτ (t)S−1ϕT
τ (t)

=
λ
∑

t=1

(ΛT )t−1CT S−1CΛt−1 =: U (10)

is invertible. Then
∂l(τ, ν)

∂ν
= 0

gives the maximum likelihood (ML) estimate of ν

as a function of τ

ν̂(τ ) = U−1

(

τ+λ
∑

t=τ+1

ϕτ (t)S−1ε(t)

)

. (11)

Maximization w.r.t. τ gives the GLR-test:

max
τ

l(τ, ν̂(τ ))

H1

>

<

H0

l0 (12)

where l0 is a user-defined threshold.

In summary, we have the following GLR test:

Algorithm:(GLR test) Consider the system
given in (1) and (2). Suppose that

(i) the system is observable,
(ii) one and only one jump ν occurs after time λ,

where λ is given by (4). Then ν̂(τ ) defined in (11)
gives the ML estimate of the jump ν at time τ ,
where U , S, ϕτ (t), ε(t) are defined in (10), (7), (8),
(6), respectively. Substituting the ML estimate
ν̂(τ ) into the LLR l(τ, ν) defined in (9), we have
the estimate of the LLR l(τ, ν̂(τ )). If the LLR
l(τ, ν̂(τ )) is larger than user defined threshold,
there is a jump. 2

Remark: Assumption (i) can be reduced for the
jump time estimation, since this assumption is
required for the pole shifting and the invertibility
of U in (10). If the system is detectable and the
unobservable poles of A lie in 0, then it is possible
to shift the poles of A to 0 and synthesize the
deadbeat observer. If R is not invertible, the ML
estimate of the jump ν̂(τ ) can not be determined
uniquely, but the LLR l(τ, ν̂(τ )) can be computed
utilizing the pseudoinverse. Note that the jump
which lies in the unobservable space can not be
detected without this assumption. Assumption
(ii) is necessary for the initialization, while λ is
less than the McMillan degree of the LTI system
and it is not a severe restriction.

Remark: In order to detect the sequence of
jumps, a reinitialization of the state of the ob-
server has been discussed (Willsky and Jones,
1976). Assuming that a sequence of jumps do not
repeat within a small time interval of the size
λ, such reinitialization is not necessary for the
proposed method. This is also a merit of the new
approach.

4. OFFLINE IMPLEMENTATION OF THE
MARGINALIZED GLR TEST

Prior information about the variance of the noise
may be unrealistic in several applications, as dis-
cussed in (Gustafsson, 1996). Consider a scaling
ρ for the noise variance as ρW, ρV , the LLR is
inversely proportional to ρ and the choice of the
threshold is difficult without the knowledge of ρ.
We assume that the scaling ρ has the uniform
distribution



p(ρ; a, b) =

{ 1

b − a
if a < ρ < b

0 otherwise
. (13)

By taking limit for a → 0, b → ∞, one can
marginalize the prior knowledge about the scaling
ρ. We will discuss this marginalized GLR test
in offline with window size N larger than λ. We
consider the time interval 1 to N without loss of
generality. In addition, we assume the assumption
(i), (ii) in the previous GLR test, and assume that
Nq > 2, which is satisfied if N > 3 and is not a
severe restriction.

The conditional distributions of the residual ε(t)
becomes

p(ε(t)|H1, ρ; a, b) =


































1
√

(2π)q det(ρS)
exp

(

−
R(ν, τ ; t)

ρ

)

for τ ≤ t ≤ τ + λ

1
√

(2π)q det(ρS)
exp

(

−
R̃(t)

ρ

)

otherwise

p(ε(t)|H0, ρ; a, b) =
1

√

(2π)q det(ρS)
exp

(

−
R̃(t)

ρ

)

Straightforward integration yields

N
∏

t=1

p(ε(t)|H1; a, b)

=

∫ τ+λ
∏

t=τ+1

p(ε(t)|H1, ρ; a, b)p(ρ)dρ

=

∫

SN,ρ(τ)

a
SN,ρ(τ)

b

ρ
Nq−2

2 −1 exp (−ρ) dρ

(SN,ρ)
Nq−2

2 (b − a) ((2π)q det S)
Nq
2

where

SN,ρ(τ ) :=

τ
∑

t=1

R̃(t) +

τ+λ
∑

t=τ+1

R(ν, τ ; t)

+
N
∑

t=τ+λ+1

R̃(t). (14)

Similarly,

N
∏

t=1

p(ε(t)|H0; a, b)

=

∫ τ+λ
∏

t=τ+1

p(ε(t)|H0, ρ; a, b)p(ρ)dρ

=

∫

S̃N,ρ
a

S̃N,ρ

b

ρ
Nq−2

2 −1 exp (−ρ) dρ

(SN,ρ)
Nq−2

2 (b − a) ((2π)q det S)
Nq
2

where

S̃N,ρ :=

N
∑

t=1

R̃(t). (15)

The LLR between H1 and H0 can be written as

lN,ρ(ν, τ ; a, b)

:= log

∏N

t=1
p(ε(t), ν|H1; a, b)

∏τ+λ

t=τ+1
p(ε(t), ν|H0; a, b)

= −
Nq − 2

2

(

log SN,ρ(τ ) − log S̃N,ρ

)

+ log

∫

SN,ρ(τ)

a

SN,ρ(τ)

b

ρ
Nq−2

2 −1 exp (−ρ) dρ

− log

∫

S̃τ,ρ
a

S̃τ,ρ
b

ρ
Nq−2

2 −1 exp (−ρ) dρ. (16)

In order to marginalize the prior knowledge about
the size of the noise variance, we take limit for
a → 0, b → ∞. The marginalized LLR is given by

lN,ρ(ν, τ ; 0,∞) = lim
a→0,b→∞

lN,ρ(τ ; a, b)

= −
Nq − 2

2
log

SN,ρ(τ )

S̃N,ρ

. (17)

Then

∂lρ(ν, τ ; 0,∞)

∂ν
= 0

gives the ML estimate of the jump ν̂(τ ) in (11).
Substituting the ML estimate ν̂(τ ) in (11) into
the LLR in (17), the GLR test remains unchanged.
Since SN,ρ(τ ) is divided by S̃N,ρ in (17), this GLR
test does not require prior information about the
size of the noise variance.

Note that a sufficiently small threshold for S̃N,ρ

is necessary to avoid S̃N,ρ ≈ 0, which denotes

“S̃N,ρ is close to 0” for notational simplicity. If

S̃N,ρ ≈ 0, it is obvious that there is no jump. So
this threshold must be defined by the numerical
accuracy and not by the noise level.

Next we discuss the necessity to formulate the
marginalized GLR test in offline. Assume it is
formulated in online, i.e. we choose the window
as the time interval τ + 1 to τ + λ for each τ .
Then the marginalized LLR which corresponds to
(17) can be written as

lλ,ρ(ν, τ ; 0,∞) = −
λq − 2

2
log

∑τ+λ

t=τ+1
R(ν, τ ; t)

∑τ+λ

t=τ+1
R̃(t)

.

Since the jump estimate ν̂(τ ) is such that ϕT
τ (t)ν̂(τ )

approximates ε(t) over the interval τ +1 ≤ t ≤ τ +

λ, it follow that
∑τ+λ

t=τ R(ν̂(t), τ ; t) ≈ 0, which
yields lλ,ρ(ν̂(t), τ ; 0,∞) ≈ ∞ for all τ . This would
lead to false alarms by mistake and is crucial.

On the contrary, it can be shown that there is
no such a drawback in offline. Since ϕT

τ (t)ν̂(τ )
can not approximate the residual ε(t) outside the
interval τ+1 ≤ t ≤ τ+λ, it follows that SN,ρ(τ ) ≈

S̃N,ρ, and therefore lN,ρ(ν̂(τ ), τ ; 0,∞) ≈ 0 for
τ 6= t0. Hence we can avoid unnecessary false



alarms. In addition, it can be shown that the
marginalized LLR test can detect a large jump.
If the jump ν is large,

∑t0+λ

t=t0+1
R̃(t) ≈ S̃N,ρ

holds, while
∑t0+λ

t=t0+1
R(ν̂(t0), t0; t) ≈ 0 holds

and it follows that SN,ρ(t0) ≈ 0. The marginal-
ized LLR lN,ρ(ν̂(t0), t0; 0,∞) takes a significantly
large value and we receive an alarm. But, if the
jump ν is not large, SN,ρ(t0) ≈ S̃N,ρ. Since
lN,ρ(ν̂(t0), t0; 0,∞) ≈ 0, we do not receive.

In this section, the marginalized GLR test has
been discussed in offline. It is obvious that, if the
window size N is larger than λ, we can test in
online. The choice of the window size N is the key
problem. If we fix the jump estimation window,
the choice of its position, which correspond to the
choice of τ over the time interval 1 ≤ t ≤ N in
(14), is also the problem.

5. NUMERICAL EXAMPLE

Consider a system with

A =

[

0.5 1
0 1

]

, G =

[

1
0

]

, C =
[

1 0
]

. (18)

and with the noise variance

W = 0.01, V = 0.01. (19)

Choose the observer gain as

H =

[

1.5
1

]

,

then the system matrix of the error dynamics
becomes

Λ =

[

−1 1
−1 1

]

which has a multiple eigenvalue at 0.

First we demonstrate the online GLR test dis-
cussed in Section 3 by the following three jumps

ν1 =

[

0
0.1

]

, ν2 =

[

0
1

]

, ν3 =

[

0
10

]

at time

t0 = 50.

The state jumps ν1, ν2, ν3 can be interpreted as
actuator offsets, see (Caglayan, 1980; Gustafsson,
2000), and are important in practice.

The problem is to estimate the jump ν and the
jump time t0. For each jump ν1, ν2, ν3, Figure
1–3 show the state of the system (upper left),
the output of the system (upper right), the state
estimation by the Kalman filter (middle left), the
state estimation by the deadbeat observer (middle
right), the residual generated by the dead beat
observer (bottom left), the GLR by the deadbeat
observer (bottom right), respectively. First we
compare the transitions of the state estimations.

The second state of the system given by (18) is not
directly affected by the noise and Kalman filter
does not track the state quickly, while the dead
observer does. Since we estimate the jump and
jump time by the transition of the residual, this
comparison motivates the deadbeat observer as a
substitute for the Kalman filter. Next we estimate
the jump and the jump time. The jump ν1 is the
same level as noise, so there is no significance of
the LLR at time t0 = 50 (see Figure 1). For the
jump ν2, the GLR test gives accurate estimate for
the jump time

arg max
τ

l(τ, ν̂2(τ )) = 50,

while does not give the accurate estimate for the
jump

ν̂2(50) =

[

0.5749
1.0078

]

(see Figure 2). The jump ν3 is significantly larger
than the noise level, so the GLR test gives the
accurate estimate for the jump time

arg max
τ

l(τ, ν̂3(τ )) = 50,

and gives the more accurate estimate for the jump

ν̂3(50) =

[

0.2679
9.9844

]

as expected (see Figure 3).

Then we compare the GLR test discussed in Sec-
tion 3 and the marginalized GLR test discussed
in Section 4. Assuming that true noise variance
are given in (19) and that the jump ν2 occurs at
time t0 = 50, we compare the LLR with unknown
scaling

ρ = 10 or ρ = 1 (true) or ρ = 0.1

The LLR in Section 3 is inversely proportional
to the unknown scaling ρ (see upper left, upper
right, lower left part of Figure 4 for ρ = 10,
ρ = 1, ρ = 0.1 respectively), and it follows that
the choice of the threshold is difficult without the
knowledge of the size of the noise variance. On the
other hand, the LLR in Section 4 takes the same
value for all unknown scaling (see lower right part
of Figure 4).

Finally the performance of the marginalized GLR
test are illustrated for the jump ν1, ν2, ν3. Similar
to the GLR test, there is no significance for ν1 at
time t0 = 50, while there is for ν2, ν3.

6. CONCLUSION

The deadbeat observer based GLR test has been
studied for the detection and estimation of a
jump in LTI systems. Since the proposed method
only requires a small window size of at most the
McMillan degree of the system, it is suitable for



the online detection of the relatively large jump.
Assuming the noninformative prior information
for the size of the noise variance, the marginalized
GLR test has been also discussed in offline to over-
come the difficulty in the choice of the threshold.
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Fig. 1. GLR test for the jump ν1 at time t0 = 50
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Fig. 2. GLR test for the jump ν2 at time t0 = 50
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Fig. 3. GLR test for the jump ν3 at time t0 = 50
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Fig. 4. GLR test for the jump ν2 with unknown
scaling ρ = 0.1 (upper left), ρ = 1 (upper
right), ρ = 10 (lower left), marginalized GLR
test for the jump ν2 (lower right)
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