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Abstract: Non-minimum phase zeros and poles of a process put upper and low er
constraints on the bandwidth of a closed loop system. It is thus of great interest
to be able to iden tifythese quantities. In this contribution it is shown that non-
minimum phase zeros and unstable poles can be iden tifiedusing high order ARX-
models without the standard o(n) (n is the model order) variance penalty for over
modeling. An asymptotic, in the model order and the number of data, expression
for the variance of non-minimum phase zeros is derived. This result shows that the
problem of determining the performance limits of a system from experimental data is
considerably easier than identifying the complete system.
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1. INTRODUCTION

Iden tification for cotirol has received considerable
interest in recen tyears. See (Gevers, 1993) for
overviews of the activity in the early 1990’s. Much

of the atten tionhas been on closed loop iden ti-

fication, see (V anden Hof and Schrama, 1995)
and (Forssell and Ljung, 1999) and more recently
on model validation/unfalsification (Bombois et
al., 1999), (Woodley et al., 1998).

Experiment design in the con text of con trol
design has also receiv ed renewed interest, see
e.g. (Hjalmarsson et al., 1996), (Forssell and
Ljung, 1998), (Lindqvist and Hjalmarsson, 2000),
(Cooley et al., 1998) and (Lindqvist, 2001).

An intrinsic problem in experiment design is that
the optimal design depends on the system which is
to be identified. Hence, even though these designs
may be used to get intuition for how to design
the identification experiment, they are in general
infeasible.

Hence suboptimal methods must be developed. It
is generally acknowledged that an accurate model
is needed around the cross-o ver frequencyof the

loop gain. Since the loop gain depends on the,
yvet to be designed controller, this frequency re-
gion is in generally unknown. How ev er for non-
minimum phase systems, the non-minimum phase
zeros restricts the achievable bandwidshe e.g.

(F reuderberg and Looze, 1998) or (Skogestad and
P ostleth w aite, 1996). A real single non-minimm
phase zero at z restricts the bandwidth to approx-
imately z/2. Hence, if the non-minimum phase
zeros were known, the experiment design problem
would be simplified considerably. Knowledge of
the performance limits would also ease the task of
deciding on model structure, model order, noise
model and pre-filters since one then knows the
important frequency range.

From the discussion above it should be clear that
knowledge of the non-minimum phase zeros is very
useful in system identification for control design.
T ypically these zeros are not knovn so the ques-
tion arises how difficult it is to get this information
from a preliminary identification procedure. This
is the theme of this paper.

We assume that the model order is unknown.
Hence, the first problem is to determine a suit-



able model order. Usually it is desirable that the
model is not more complex than the system to
be identified since a too high model order results
in a, due to variance errors, less accurate model.
Asymptotically, the variance of e.g. the frequency
function estimate is proportional to the model
order (Ljung, 1999). In fact, the optimal model
complexity should be less than the complexity of
the system itself (this is the so called bias/variance
trade-off), (Ninness and Goodwin, 1995). Thus
much attention in the identification for control
literature has been given to reduced order models,
see e.g. (Zang et al., 1995) and (Lee et al., 1993).

In this contribution we show that identification
of non-minimum phase zeros is not subject to the
variance penalty referred to above. We show that
the variance for identified non-minimum phase
zeros converges to a finite value as the model
order tends to infinity. A similar expression can be
derived for unstable poles. Thus the model order
issue is not critical when non-minimum phase
zeros are estimated. A high order ARX-model
will do the job! On the contrary, the variance
of minimum-phase zeros and stable poles grows
geometrically with the model order for models
parameterized by transfer function coefficients. A
result that shows that control design based on
estimates of these quantities should be avoided.

These results then lead to a simple experiment
design procedure when it is known that the system
is non-minimum phase:

e Do an initial experiment design which is
aimed at identifying non-minimum phase ze-
ros and unstable poles of the system. This
design is based on the asymptotic variance
expression for that is derived in this paper.

e Then identify a high order ARX-model using
the data from the initial experiment.

e Use the identified unstable non-minimum
phase zeros of this model to determine the in-
teresting frequency range for control design.
For example, an identified real non-minimum
phase zero at z implies that the maximum
bandwidth is z/2. Use this information to do
a new experiment design. This design can be
more or less elaborate.

e Identify a new model based on data obtained
with the new experiment design. Here, the
knowledge of the desired bandwidth will help
when deciding on model structure, model
order, noise model and so on.

Notice that dual results can be derived for unsta-
ble poles.

In Section 2, the assumptions on which the fol-
lowing results rely on are stated. In Section 3,
the covariance of the parameter estimates is given.
Following, in Section 4 and 5, the asymptotic (in

the number of data) covariance of the zeros is
derived. Section 6 proposes a simplified expression
for the asymptotic (in the number of data and in
the model order) covariance of the ARX-model
zeros and contain examples/simulations of the
expression. Finally, conclusions can be found in
Section 7.

2. ASSUMPTIONS

The conditions under which the identification will
be performed must be defined carefully.

The following assumptions on the system and
identification procedure are used throughout this

paper

A1l: The system is described by the ARX-structure,
ie.,

y(t)+ 3 agu(t— k) =3 b2u(t — ) + eo(t)
k=1 k=0

(1)

where n? > nb. Thus, the system is of order
n%. For ease of presentation, we will assume
that n?—1 = n = n, . It can be easily shown
that the results holds even if this is not the
case. Further, we assume that the system is
stable, i.e. all poles lie inside the unit circle.
A2: The input is generated as u(t) = F(q)v(t)
where F(g) is a minimum phase filter with
no zeros on the unit circle and v(t) is zero
mean white Gaussian noise with variance 1.
A3: The system noise e,(t) is zero mean white
Gaussian noise with variance o2.
A4: The model is described by

y() + Y ary(t —k) =Y bru(t — k) +e(t)
k=1 k=1

—~~
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~

where e(t) is white noise and n® > n?,
n® > nb. This means that the system is in
the model set. For ease of presentation, the
modeling will be assumed to use the same
number of a and b parameters i.e., n = n® —
1 = nb. The notation

" = [af -ap 1 0 - 0b§

o

00 - O]T

will also be used to denote the true parameter
vector when the model is over-parametrized,
i.e. when n > n,.

A5: The least squares estimate

N-—1 -1
i =(5 > 6uB0n(0)T)
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is used, where

[yt =1) - —y(t—n-D]"

¢n(t): [u(t) u(t—n)]T

3. ESTIMATION ACCURACY

Under Assumptions Al — A5, the optimal one
step predictor for the output signal can be formed
linearly in the parameters as

g(tlt —1,67) = oy (1)6;

Thus the parameter estimate is unbiased and the
asymptotic covariance of the estimate is given by

. on n\ (pn n\ T
ngnooNE{(eN —02) (0% —02)" =

o (E{%(k)%(k)?’)l

See e.g. (Ljung, 1999) for details on estimation
and asymptotic covariance expressions.

4. SYSTEM AND MODEL ZEROS

The linear parameterization is convenient since
the identification procedure is easily performed.
However, the objects of most interest are the
zeros (and poles) of the system. Therefore, the
measure of interest is not only the variance of the
estimated parameters 6%, but also the variance of
the corresponding zeros.

Introduce the polynomial

p(2,0") = bz +b12" 7 -+ by, (4)

The system zeros are then defined as the solutions
27,1 =1,---,n, to the equation

p(z,0,°) =0

For a model represented by the parameter 6™, the
zeros z;(6™), i = 1,--- ,n are the solutions to

p(z,0") =0

When the model is over-parametrized, i.e. when
n > mn,, more parameters than necessary will
be estimated, resulting in larger variance for the
estimated parameters. It is therefore of great
interest to see how the variance of the model zeros
is affected by the over-modeling.

5. ASYMPTOTIC COVARIANCE
EXPRESSION FOR THE MODEL ZEROS

For the purpose of evaluating the accuracy of the
estimated parameters, the covariance and mean
of the parameter estimates are usually used. The
asymptotic expression show what happens for

large sample data i.e., when the data used for
identification is very long. These results are useful
tools in determining parameter accuracy , since
finite-data expressions are often very hard to
compute. See (Ljung, 1999) for more background
on the use of asymptotic expressions in the area
of system identification.

Over-modeling implies that more zeros than nec-
essary will be estimated. The asymptotic covari-
ance for the zeros can be calculated using first
order approximations (over line denotes complex
conjugate). Below, let zk(g%) be one of the es-
timated zeros and let z; be the corresponding
system zero zy(6"). Then, as a natural extension
of the previous results for FIR systems reported
in (Lindqvist, 2001; Hjalmarsson and Lindqvist,
2001) (with a slight correction with the factor
|bS|%), we have

lim NE|z,(0%) — 20))? =
—00

o?lg? [+ ()]
X
No 292
b3 [* Hi;ék |1 Tzg (5)
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where the subscript (2,2) is used to extract the

(n+1) x (n+ 1) lower right sub matrix.

Allowing the model order to increase together
with the number of samples, we can formulate
a simplified expression for the asymptotic co-
variance of non-minimum phase zeros. In pre-
vious contributions (Hjalmarsson and Lindqvist,
2001; Lindqvist, 2001), the asymptotic results
was derived for the FIR case. In the presenta-
tion here, this model corresponds to the choice
ng = 0 and » = np in the system structure
(1) as well as the model structure (2). In the
contributions (Hjalmarsson and Lindqvist, 2001;
Lindqvist, 2001), the following theorem was the
key result for deriving the asymptotic covariance
expression in the FIR case.

Theorem 5.1. Let u(t) = F(q)v(t) where F(q) is
minimum phase stable filter and v(t) is zero mean
Gaussian white noise with variance 1. Further,
let R?, be the Toeplitz matrix built up by the
elements (k) = Eu(t)u(t — k), i.e., that the
(4, k)th element of R", is 7, (j — k) . Further let z

U

be such that |z| > 1. Then it holds that
1
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Proof: see (Lindqvist, 2001) a.

From this result, it follows that the asymptotic (in
n) limit of (5) for the FIR-system and model case
is

2

. : ony _ 0
L
02|22 (6)
° 292 o 2
g1 (1= |2212) TTx [1 = 5[ F (=)
under the same assumptions as Theorem 5.1. This

follows directly as E{¢,(t)¢.(t)" } = (RZU)_1 as
defined in Theorem 5.1.

This theorem shows the interesting (and some-
what surprising) result that for non-minimum
phase zeros, the variance does not grow un-
bounded with n, but converges to the limit (6).
Contrary, for minimum phase zeros, it can be
shown that the variance will grow geometrically
with the number (n) of estimated parameters.

For details on the FIR case, see (Hjalmarsson and
Lindqvist, 2001; Lindqvist, 2001).

6. ORDER-ASYMPTOTIC COVARIANCE OF
THE ARX MODEL ZEROS

The most commonly used model structure in sys-
tem identification is the ARX-model. The reason
is that it gives a closed form solution to the identi-
fication problem, see (Ljung, 1999), and that it is
very flexible; by choosing sufficiently high orders
of the A and B polynomials any linear system
can be modeled with arbitrary accuracy. However,
if the true system is of ARMAX or Box-Jenkins
structure, the orders of A and B may have to be
chosen much higher than the true order of the
system. It is thus of great interest to analyze how
this over-modeling will affect the accuracy of pole
and zero estimates.

The following theorem is an extension of the result
in (Lindqvist, 2001; Hjalmarsson and Lindqvist,
2001) to ARX-models.

Theorem 6.1. Consider the ARX-model structure
(1) and the least squares estimate (3). Assume
that all system zeros are unique, i.e. that z; #
z) for k # ¢, and that Assumptions Al — A5
are satisfied. The asymptotic covariance for the
estimate z (0% ) of a non-minimum phase zero at
zy is then

2

lim lim NE |z (6%) — 22
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Proof: see Appendix A a

Note that this result shows that the accuracy of
the estimated non minimum phase zero is the
same as for FIR modeling. This is interesting,
especially in view of the extra a-parameters of
the dynamics that are estimated. However, there
is some intuition in the result as the signal to
noise ratio of the output is independent of the
(common) A-polynomial.

Notice that similar expressions can be derived
for unstable poles of systems (identified in closed
loop), however in this paper focus is on the iden-
tification of non-minimum phase zeros.

The implication of Theorem 6.1 is that there
(asymptotically in the model order) is only a small
penalty for the over-modeling when the aim is to
identify non-minimum phase zeros.

6.1 Numerical Example

In this section, we will exemplify Theorem 6.1
and the implications of this result to high order
estimation of zeros.

6.1.1. Simulated Colored Noise
ARX system

Consider the

y(t) — 1.93y(t — 1) + 0.942y(t — 2) =
—0.0242u(t) + 0.0073u(t — 1)+ (8)
0.96u(t — 2) + e(t)
which has a minimum phase zero in -0.9 and a

non-minimum phase zeros in 1.2. The input for
the identification experiment is generated as

>+ 1273+ 0.81v
@2 —-1.131¢+0.64

u(t) = F(q)o(t) @) (9)
where v(t) is white Gaussian noise with variance
1.

The non minimum phase zero is identified using a
model of order n, see Assumption Al, where n is
varied from small to very large. Figure 1 show the
results of Monte Carlo simulated covariance and
the asymptotic expression (7) plotted versus the
model order n.

The next example clarifies the difference be-
tween the variance for minimum phase and non-
minimum phase zeros as the model order in-
creases. For the same system (8) as previously
we show the resulting zeros from 100 identifi-
cations superimposed in Figure 2 for different
model orders. Notice how the locations of the non-
minimum phase zeros are much less affected by the
increase in model orders than the minimum phase
Zero.



Fig. 1. Asymptotic covariance for the non-
minimum phase zero plotted versus the model
order. Solid line: Monte Carlo (1000 runs)
simulated covariance. Dashed line: Asymp-
totic covariance expression using Theorem
6.1

Fig. 2. Estimated zeros (at —0.9 and 1.2)) from
100 experiments for model orders n = 2,5, 10
and 20. Notice the drastic increase in the
variance for the minimum phase zero.

7. CONCLUSIONS

We have in this contribution shown the rather
surprising result that the variance of estimated
non-minimum phase zeros depends very little on
the model order. Further, we have shown that
there is only a small penalty for introducing the
ARX-model structure (even if the model is of FIR-
type) when considering the non-minimum phase
zeros. This simplifies the problem of identifying
a system’s performance limitations considerably.
A numerical example was used to illustrate the
results. It has also been argued that these results
can be explored in experiment design in identifi-
cation for control.

APPENDIX A : PROOF OF THEOREM 6.1

Let I';,(z) = [L--- z~™]. The nontrivial part of the
proof of Theorem 6.1 is to show that

Tim T (2) [B{¢n()én(®)T} ( )FS@) =
1 ,

(1= 12172)[F(=})

|2
(10)

where the subscript (2,2) is used to denote the
n X n lower right sub matrix.

For this purpose we define the impulse response of
the system from the input u(¢) to the output y(t)
as the sequence {g:}$2,. The impulse response
from the noise to output is defined as {h;}52,.

Thus, the correlations ry,(k), ry.(k), ryy (k) can
be derived as:

ruu(k) = Eu(t)u(t + k),
ryu(k) = Ey(t)u(t + k) = Z ImTuu (m)7
m=0

ryy(k) = By(@)y(t + k) =ry, + 75,

r;jy(k) = Z ngglruu(m — l),

m=0 [=0
o0 o0

re, (k) = Z thh,a2
m=0 [=0

where ry, (k) corresponds to the part of ry, (k)

that comes from the noise and r,, corresponds

to the part of ry, (k)that comes from the input.

Let Ry, Ry,, Ry, Ry, be the corresponding n +

1 x n + 1 correlation matrices such that
[RZU](ch) = ruu(j — k), [R;Ly](j7k) =ryy(j — k),
[R;Lu] Gk) ryu(j — Kk +1),
[B2y] gy = rwu(k = = 1).

Then, the matrix E{¢,(t)¢,(t)T} can be com-
posed as

E ntntT:{RZg _JEZ“}. 11

(o7} = | T | ()

Now, using block matrix inversion formulas, the
lower sub matrix of the inverse of 11 can be
derived as

—1

E{ou 00"} | Ly = () ()

n n n n \—1pn n n -1

(12)
Using Theorem 5.1, we have that
-1 1
lim [y(2)(Ry,) Dn(z)=
A ) = RGP
(13)

where F(q) is the minimum phase input signal
shaping filter as defined in A2.



The remaining issue of the proof is to determine
that the second part of (12) vanishes as n — oo.
To this end, we note that there exists a finite ¢
and a |A| < 1 such that
lgn] <A™ and  |ryu(n)] < A
holds. This follows from assumption A2.

Using this, it can be shown that
Ry (RE) ] =

(k.4)
n+l oo
Z Zglrult(k_m+l) I:(RZU)_I} =
m=1 [=0 (m,j)
n—k n+1 )
Z g Z [RZu](IH-l,m) I:(RZU) ](m i) +
=0 m=1 )

i giruwu(k —m +1) [(RZU)A] (ma)

l=n—k+1
gj—k + O(An_k)

holds (since || (RZU)71|| is limited, see (Grenander
and Szegd, 1958)) . As a consequence, we obtain

—1
L. (2) |Ry, (R, =
( )‘ [ () ]c,j) (14)
z 7G(z) + o(max{z"", \"})
where (:,7) is used to denotes the jth column of
the corresponding matrix and G(z) =Y 2, 2z 'gi.

Now, continuing with R, (R™,) "' R" , we have

uy7
(R, (Re) RY,| =, = B+ o(A)

(k7j)
(15)
using the arguments as before.
Thus, combining (14) and (15) and applying The-
orem 5.1 we have that
. —1
lim T7(2)(Ri,) Ry, x
n n n -1 n
(Ryy — Ry, (Riu) Ruy) X
N B 16
Ry (L) ' Ta(z) = 1o
O
o2 |H(z)|” (1 - |2|72)
since G(z) =0 (z is a zero of G(2)).
Thus, by combining (13), (14) and (15), we have
that (10) holds.
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