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Abstract: This paper is introduced the new approach to synthesis of the tracking
problem with respect to the output on the basis of transformations of linear systems
into the block-canonical form of the controllability. The decomposition approach to a
solution of the tracking problem with a given accuracy is offered, that allows one to
loosen conditions imposed on the class of demanded signals. Copyright   2002
IFAC
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1. INTRODUCTION

The paper is studied the structural properties of
control systems in the tracking problem with respect
to demanding values of the output and introduced
synthesis algorithms of such problems on the basis of
the block-control principle (Drakunov, et al., 1990)
with reference to linear stationary systems of a
general view. The necessary and sufficient conditions
of a solution of the tracking problem are obtained on
the basis of the transformation of the initial system
into the block-canonical form of the controllability
with respect to the output (Utkin V.A., 2001). It is
essential, that the given algorithms of synthesis of the
tracking problem with a given accuracy do not
superimpose the padding requirements on
smoothness of driving functions and guess only their
restricted modulo together with the first derivatives.

2. PRIOR RESULTS AND PROBLEM
FORMULATION

Consider a time-invariant linear system described by

,, 1 DxyBuAxx =+=!              (1)

where nRXx ⊂∈  is the state, mRUu ⊂∈  is the
control input, pRy ∈1  is the output, DBA ,,  are
know constant matrices of appropriate dimensions.
The tracking problem with respect to demanded
values of the output p

d Rty ∈)(1  is reduced to the
stabilization problem of tracking errors

                    )(111 tyyy d−=∆ , 0lim 1 =
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y
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Standard approach to a solution of the problem is the
translation one to the stabilization problem of system
(1), rewritten with respect to tracking errors of the
state )(txxx d−=∆ :
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where the demanded values of the state components
are searched from the following relation

                           )()( 1 tytDx dd = .          (4)
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Let us note some problems originating at usage of the
approach.
1. The stabilization problem with respect to all
components of the state of system (3), in which the
variables )(tη  are considered as the external
disturbances, has a solution with necessity and
sufficiency only in the case, when the disturbing
actions are affixed only on the input of the control
plant (Drazenovic, 1969). In particular, the
stabilization problem of system (3) has a solution
always, if the dimension of the control input is equal
or more to the dimension of the state and nB =rank .
In a case, when nDy == rankdim 1 , equation (4)
has an alone solution, and there is no possibility to
affect the circumscribed above situation. Otherwise,
if nDy <= rankdim 1 , the equation (4) has not an
alone solution and there is a multivariate possibility
of a choice of demanded values only for a part of
components (or their linear combination) of the state.
For example, if the state of system (1) is divided into
two groups so, that in the expression

22111 xDxDy +=  condition pyD == 11 dimrank  is
satisfied, the choice of demanded values

))(( 221
1

11 xDtyDx −= −  ensures equality (4), and
components of the state 2x  remain free. Accordingly,
the dimension of the disturbances in system (3) is
reduced and conditions of a solution of the
stabilization problem are loosened. Thus, for
translation of the tracking problem with respect to
output (2) to stabilization problem (3) is necessary to
found any compromise between a choice of a minor
of the complete rank of the matrix D  and evaluation
of demanded values of the relevant components of
the state, and possibility of a solution of the
stabilization problem of system (3) with respect to
these components. As a whole, the problem of
translation of the tracking problem on the output to
the stabilization problem of all state vector (or
definition of the demanded values with respect to
state components under the demanded output) with
provision of it’s solution is put.

2. The representation of values of the output can be
not correct in the sense, that they can not be
implemented in a closed-loop system. For example,
in a system of the second order described by

uxxaxx =+= 2211 , !! , by virtue of a physical relation
between variables of the type “position – derivative”
is not possible to implement arbitrary given functions
of these variables. Let us rewrite this system with
respect to mismatches as follows

221211211 ),( dddd xuxxxxaxxax !!!! −=−+++= ∆∆∆∆

and consider the static equations 021 == xx !! ∆∆ . So
we shall receive the unique optional version of
implementation of demanded values

01211 =−+ ddd xxxa ! , where one of a variable

completes a demanded value, and another obeys to
the equation. On the other hand, there can be only
the problem of engineering implementation of a
tracking system, bound with its interior stability. For
example, if in the system of the second order
described above to give the tracking problem with
respect to only the second variable

∞→→−= ttxxx d ,0)(222∆ , a solution of the
tracking problem will be correct, if the proper
motions of the first variable (zero of a closed-loop
system) are stabilized, i.e. 0<a .

Summarizing this point, let us allocate necessity of
solving of two following problems: first, inspection
of a formulation of the tracking problem on
correctness of forming of demanded values; second,
functional test of a closed-loop system on an interior
stability (transmission zero).

For a solution of the tracking problem with respect to
the output, in present paper the known approach based
on the transformations of the initial linear model of the
control plant into the block-canonical form of the
controllability (Utkin Victor A., 2001) is utilized to a
solution of the stabilization problem. The block-
canonical form of controllability described by
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iiij QBA ,,  are known constant matrices of

appropriate dimensions, vector )(tf  is arbitrary
restricted modulo exterior disturbances, the vector

rm
drdrrr RxxA ∈−= )(1 !η occurs in connection with

an entry of the first equation in (5) with respect to
tracking errors drrr xxx −=∆  in the tracking
problem on variables rx  considered as the output. In
the framework of systems synthesis with divided
motions with respect to system (5), following
theorem is proved.

Theorem 1. (Utkin V. A., 2001). In system (5) the
invariance conditions with respect to the output

rr xDy =  are fulfilled.

Thus, in the supposition, that the disturbances are not
accessible to measuring and restricted modulo
functions in time, the stabilization problem of the



output with a given accuracy is resolved. In
particular, vector 1η  can be referred to external
disturbances, if to assume, that its components are
restricted modulo functions, that allows to not utilize
derivatives of demanded values in a feedback circuit.
For a case, when the disturbances are accessible to
measuring and in the supposition about existence
their derivative up to the order )1( −r , the problem
of asymptotic convergence to zero of the output is
resolved. Designed step-by-step procedure (Utkin V.
A., 2001) of the stabilization problem of system (5)
allows sequentially to select variables 01,...xxr− ,
considered as the virtual controls, and purely the
control u .

Unfortunately, the block-canonical form of a
controllability (5) does not allow to solve a tracking
problem on the output, as, in generally, the output in
the terms of system (5) looks like

00... xDxDy rr ++=  and does not coincide with the
vector rx . In following section, with reference to
linear systems, the tracking problem with respect to
the output is solved on the basis of the
transformations of the initial system into the block-
canonical form of a controllability with respect to the
output.

3. MAIN RESULT

Consider the tracking problem on the output for the
linear system described by (1), (2). Let us introduce
the step-by-step procedure of the transformations of
system (1)-(2) into the block-canonical form of the
controllability with respect to the output.

Step 1. (i) Let us assume, that 0rank 1 ≠= pD  and
divide the state components of system (1) so that in
the equation 010

1
0

1
101 xDxDy +=  the conditions

,dim 11
1
10 ppD ×= ),(dim 1110 pnpD −×=

0det 1
10 ≠D  are met. Let us rewrite the system given

by equation (1) with respect to variables 01, xy  as
follows
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(ii) If in system (6) the conditions 11 ˆrank pB =  and
0,ˆ},rank{ 221101 ≠+= pppAB  are met, the first

equation in (6), after series transformations to the
canonical form of the controllability, at first, with
respect to the control u  and then, with respect to the
virtual control 0x , can be transformed into the
following form

             

,ˆˆˆˆ

,

,

1010111

0
*
201

*
21

*
2

111

uBxAyAy

xAyAy

yAy

++=

+=

=

!

!

!

          (7)

where 1)ˆ,,( 1
*
211

pTTTT Ryyyy ∈= , 1ˆ
1ˆ

pRy ∈ ,

,, 12
1

*
2

pp RyRy ∈∈ 11 ˆˆrank pB = , 2
*
20rank pA = .

Generally, some equations in (7) can miss, if
dimensions of their states are equal to zero. If 02 =p
or 0ˆ1 =p , then the second or the third equation is
missed. A situation 0ˆ 21 =+ pp  is impossible, as
contradicts a requirement of the controllability of the
initial system.

(iii) Let us make non-singular substitution of control
components as follows

1
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v

u
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where ),( 10
TTT uuu = , )ˆ,ˆ(ˆ

12111 BBB = ,

)ˆˆ(ˆdim 1111 ppB ×= , 0ˆdet 11 ≠B ,
)ˆ()ˆ(dim 11 pmpmI −×−= .

As a result of the transformations on the step 1, the
initial system, by virtue of the control

*
00100

ˆ vxAv +−=  selected on the basis of (6)-(7),
will be rewritten as follows
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101
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000001010 uBvBxAyAx +++=! ,

where 101
ˆ

1
ˆ*

0 ˆrank,, 11 pmBRuRv pmp −=∈∈ − . The
procedure is finished, if the second equation in (8)
( 02 =p ) is missed. Thus, the pair of matrixes

],)ˆ,[(
11 ˆˆ11 pp

TTT IAA ×  is controllable. An engineering
specification is stabilizability of a pair of matrixes

),( 010 BA . Otherwise ( 02 ≠p ) we go to the step 2,
where the transformations of the step 1 are also
applied to the system
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Step 2. (i) Let us assume, that 2
*
20rank pA =  and

divide the state components of system (9) so that in
the equation 111

1
1

1
110

*
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)(dim 2211 pnpA −×=  are met. Let us rewrite the
system given by equation (9) with respect to
variables *

1
*
2 , xy!  as follows
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Change of the variables described by
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in valid (8) allows to eliminate the second and fourth
items in both equations (10), that allows to rewrite
system (10) as follows
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As a result of the transformations of points (ii) and
(iii), the system given by equation (11) can be
transformed into the following form
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where 2
2

pRy ∈ , 3*
3

pRy ∈ , 2ˆ
2

pRy ∈ ,

3222 ˆ pppp −−= , 211
1
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3
*
31rank pA = . The procedure is finished, if the

second equation in (12) ( 03 =p ) misses. Otherwise
( 02 ≠p ), we go to the step 3, where the
transformations of the step 1 are also applied to the
system ,212

*
111111111 uBvBxAyAx +++=!

1
*
311

*
3

*
3 xAyAy +=!! , etc.

Thus, on each i -th step of the procedure, the
dimension of the not transformed state 1−ix  decreases
and the procedure is finished for a finite number of
steps. Let the procedure is finished on the step ν . As
a result, system (1) is transformed into the block-
canonical form of controllability with respect to the
output pTTTTT Ryyyyy ∈= )ˆ,...,ˆ,,...,( 111 νν  designated

as follows ν,1,ˆˆ, 11 === iyyyy iiii , which
described by
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.11111,11 νννννν uBxAyAx −−−−− ++=!  (15)

The structure of system (13)-(15) is shown in fig. 1.

Figure 1.

The aggregate dimension of system (13)-(15) is equal
to the dimension of initial system (1) and

111 dimˆdimdim yyy =+ . Sub-system (15) is not
observable with respect to the states of sub-systems
(13)-(14). If initial system (1) is controllable, then
sub-system (13) is also controllable by the input 1ŷ .
With reference to system (13)-(15), necessary and
sufficient conditions of a solution of the tracking
problem with respect to the output are the following.

1. Allowing, that in further the stabilization problem
of systems (13)-(14) is considered, stabilizability of
system (13) or pair ),( 11 −− νν BA is the necessary
condition.

2. If system (13) misses
( 0),...,dim(dim 1111 == TTT yyy ν ), the expression

11 ŷHy = , )ˆ,...,ˆ(ˆ 1111
TTT yyy ν= , where matrix

)0(det ≠HH  determined by described above
procedure, meets. Sub-system (14) has structure of
the block-canonical form of the controllability (5)
and, therefore, the tracking problem has a solution
for arbitrary demanded values 1dy . Let us note, that
in this case requirements of autonomous control
(Morse A. S and Wonham W.M.,1091) are not met.
These reasons allow to formulate the following
theorem.

Theorem 2. The tracking problem with respect to
output (1)-(2) has a solution if and only if, in the
terms of system (13)-(15),

0),...,dim(dim 1111 == TTT yyy ν  and pair of matrixes
),( 11 −− νν BA is stabilizable.

The proof of theorem 2. The necessity immediately
follows from the fact, that if even one i - th equation
in system (13) is present, a part of variables 1ŷ

1ŷ 1y
∗
−

∗
11 ,..., νvv

νu

1−νx
1y∆

1ŷ∆

(15)

(14)
Regulator

(13)



completes demanded values )(tydi . Really, let us
consider without loss of generality a solution of the
tracking problem 0)(111 →−= tyyy d∆  in the last
subsystem of system (13) described by

  TTT
d yyAyyyy )ˆ,(...,, 111121 νννννν∆ =+= !!! ,      (16)

where variables 1ŷ  are considered as virtual
variables. Then, variables 1ŷ  become functions in
mismatches 1y∆ , and the tracking problem with
respect to arbitrary demanded values of these
variables can not be solved. The sufficiency follows
from the following design procedure. Without loss of
generality, let us consider sub-system (16), rewritten
with respect to tracking errors 111 ˆˆˆ ννν∆ dyyy −=
designated as follows 11 ˆν∆yx = ,

,...,ˆ 22 νyx = ννν yx ˆ=  and 11
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1
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where 11 ˆˆ ννη dd yy !−= , const)( =≤ Ntη . A
solution of the stabilization problem of system (17)
with given accuracy const11 =≤ δx  is grounded on
the basis of the backstepping procedure and the
second method by Lyapunov. Rewrite system (17) as
follows

η++−= 2111 xxkx! ,

       1,2,... 111 −=++−= −+ νη ikkxxkx iiiii
! ,      (18)

ηνννν 11... −+++−= kkvzxkx!

via the step-by-step procedure of non-special
transformations described as
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where 121 kp = , 1,111 −−= ii pkp , 1,3 += νi ,

,,11,1 jjijiij kppp −−− −=  1,4,2,2 +=−= νiij ;

12,11, −−−− += iiiii kpp , 1,3 += νi ; ν,1,0 => iki

are feedback gains, which are being a subject to
definition. Variable z  in system (18) is compensated
by the controls selected as follows zv −= . Then, the
last equation in system (18) designated as follows

                ηνννν 11... −+−= kkxkx! .        (19)

Let us consider a quadratic form νVVV ++= ...1  as
a sum of quadratic forms described by

                 )(2/1 i
T
ii xxV = , ν,1=i .        (20)

The common estimation of derivative of the
quadratic form V!  can be received by sequentially
estimation of derivative of each item (20) with the
following step-by-step procedure.

Step 1. For derivative of the first item of a quadratic
form (20), taking into account of (18), the following
estimation is valid:

)( 21111 η++−= xxkxV! )( 2111 η++−≤ xxkx .

The inequality 01 <V!  is met outside of a
neighbourhood 1121 /)( δη ≤+≤ kxx  under

fulfillment of the condition 121 /)( δη+> xk .
Taking into account, that on step 2 of the procedure
by choice of feedback gain 2k  (under fixed gain 1k )
the inequality 22 δ≤x  will be valid, a lower
estimation for choice of feedback gain 1k  is defined
from the following expression

1211 /)( δηδ +>=∗ kk .

The procedure of a choice of gain described by step 1
is also applied to the following items in (20) on steps
i , where 1,2 −= νi .

Step i . For derivative of the i - th item of a quadratic
form (20), taking into account of (18), the following
estimation is valid:

≤++−= −+ )...( 111 ηiiiiii kkxxkxV!

)...( 111 η∗
−

∗
+ ++−≤ iiiii kkxxkx .

The inequality 0<iV!  is met outside of a

neighbourhood iiiii kkkxx δη ≤+≤ ∗
−

∗
+ /)...( 111

under fulfillment of the condition

iiii kkxk δη /)...( 111
∗
−

∗
+ +> . Taking into account,

that on step )1( +i  of the procedure the inequality

11 ++ ≤ iix δ  will be valid, a lower estimation for
choice of feedback gain ik  is defined from the
following expression

iiiii kkkk δηδ /)...( 111
∗
−

∗
+

∗ +>= .
Step ν . For derivative of the ν -th item of a quadratic
form (20), taking into account of (19), the following
estimation is valid:



≤+−= − )...( 11 ηννννν kkxkxV!

)...( 11 ηνµνν
∗
−

∗+−≤ kkxkx .

The inequality 0<νV!  is met outside of a

neighbourhood νννν δη ≤≤ ∗
−

∗ kkkx /... 11  under
fulfillment of the condition

νννν δη /... 11
∗
−

∗∗ >= kkkk .

The given procedure of feedback synthesis can be
also applied to a solve of the tracking problem in the
last sub-system in (14). Behaviour of variables in the
closed-loop system can be shows by following logic
line-up:

⇒≤ νν δx ⇒≤ −− 11 νν δx

⇒≤⇒ −− 22 νν δx … 111 δ≤=⇒ xx .

The given procedure of feedback synthesis can be
also applied to choice of feedback gains in other
subsystems of system (14). As a result, the given
tracking problem with respect to the output will be
solved.

Note 1. The last requirement of theorem 1 with
respect to stabilizability of matrixes pair

),( 11 −− νν BA  (or stability of transmission zero of the
closed-loop system (Wonham, 1979)) is the
requirement of engineering implementation of a
solution of the stabilization problem.

Note 2. In the given procedure of synthesis of the
tracking problem with a given accuracy with respect
to the output, only tracking errors with respect to the
output are utilized for forming of the control (unlike
the using of derivatives of tracking errors in the
problem of ensure of asymptotic convergence to
zero). Moreover, in formulation of the tracking
problem with a given accuracy the limitations on
smoothness of demanded functions are not
superimposed, and restrictions modulo of demanded
functions and their derivative of the first order are
required only.

Note 3. In the framework of the geometrical approach
(Wonham, 1979; Willems, 1982) the necessity and
sufficient requirements of a solution of a tracking
problem with respect to the output were obtained.
Given in present paper the direct synthesis of the
tracking problem on the basis of the block-canonical
form of the controllability with respect to the output,
at first, allows to eliminate an analysis stage of
existence conditions of a solution and immediately to
initiate to a solution of the design problem. Secondly,
usage of the motions separation method (Drakunov,
el al., 1990) (or backstepping procedure (Krstic., et
al., 1995)) allows to decompose the design problem

of high dimension on separately solved sub-problems
of smaller dimensions.

4. CONCLUSION

In this paper, the decomposition design procedure of
the tracking problem with respect to the output with
given accuracy on the basis of the transformation of a
linear system into the block-canonical form of the
controllability is introduced. Necessary and sufficient
conditions of a solution of the given problem is
obtained. Unlike standard approaches, in the given
approach, restrictions modulo of demanded functions
and their derivative of the first order are required
only, and, therefore, only tracking errors with respect
to the output is utilized for forming of the control.
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