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Abstract:

We present a robust formulation of the smoothing equations for continuous-time
partially observed Bene%s and piecewise linear systems. Under this robust formulation,
the smoothing equations are non-stochastic parabolic partial differential equations
(with random coefficients) — and hence the technical machinery associated with tw o
sided stochastic calculus is not required. The robust smoothed state estimates are
locally Lipschitz in the observations which is useful for numerical simulation.
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1. INTRODUCTION

For con timous-time dynamical stochastic sys-
tems, the filtered state densit ycan be expressed
as a stochastic partial differential equation called
the Duncan-Mortenson-Zakai (DMZ) equation
(Bensoussan, 1992). Derivation of the fixed-interval
smoothed state densit yis more technical as it
requires the use of tw o sided stohastic calculus.

In this paper we deriv erobust filters and smoothers
for Bene$ and piecewise linear systems by us-
ing a gauge transformation, see for example
(Bensoussan, 1992). By robust we mean that the
resulting filtering and smoothing equations are
locally Lipschitz con tinuousin the observations
— i.e., the equations depend continuously on the
observation path. Indeed, the equations turn out
to be non-stochastic parabolic partial differential
equations whose coefficients depend on the ob-
servations. Apart from not requiring the intrica-
cies of tw o-sided stohastic calculus, these robust
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equations are useful from a practical point of view
— their numerical solution via time discretization
can be performed without worrying about the Ito
terms.

Robust filtering —i.e., re-expressing the stochastic
differential equation as non-stochastic differential
equation with random coefficients has been used
extensively in nonlinear filtering, see for example
Chapter 4 of (Bensoussan, 1992). More recently,
in (James et al.,, 1996) versions of these robust
filters, probabilistic interpretations and implicit
and explicit discretization schemes were developed
for contin uous-time Hidden Markov models.

The contributions of this paper are as follows:

1. It is shown that the smoothed state estimate
can be computed via a robust forward and back-
w ard filters. Each of these filters inwlve non-
stochastic parabolic partial differential equations.
2. Robust fixed interval smoothed estimates of
functionals of the state of the system are de-
rived. Again the equations involv e non-stohastic
integrals. These robust smoothers can be used in
maximum likelihood parameter estimation via the



Expectation Maximization (EM) algorithm.

3. As examples, robust smoothers are presented
for: (i) Benes type nonlinear dynamical systems:
(The linear Gaussian case is a special case). (ii)
Systems with piecewise linear dynamics.

2. MODEL AND PROBLEM FORMULATION

Consider the following continuous-time partially
observed nonlinear stochastic system defined on
the measurable space (2, F). Let {Py : § € 0},
where © denotes a compact subset of RP, denote
a family of parametrized probability measures.
Under Py, the state {z;:} € R™, and observation
process {y;} € R", t > 0 are described by

duy = fo(we,t) dt + og (e, t)dwy, To ~ ﬂ'g(-)
(1)
dy; = hg(xy,t) dt + dey, yo =0 (2)
Define the filtrations F; = o(zs, s < t), Gy =
U{l's;ys S S t}7 yt = U{ys S S t}

for t € [0,7]. Here T > 0 denotes a fixed
real number. w and e are independent standard
Brownian motions independent of x.

We make the following standard assumptions
(Bensoussan, 1992, pp.114) for all § € ©:

Al fp : R™ %[0, T] = R™, hy : R™ x [0, T] — R”
denote bounded Borel measurable functions

A2 0p : R™ x [0, T] — R™*" is continuous
and bounded such that @ = ogoj is a uniformly
positive definite m x m matrix, i.e., Q > af for
some real o > 0.

A3. f and o are Lipschitz in z, i.e.,

|f(z1,t) = f(22,t)] < klzy — 2]
llo(z1,t) — o(z2,t)]] < kw1 — 22

A4. The probability measures on R™ with densi-
ties (7§(+) : 0 € ©) with respect to the Lebesgue
measure are mutually absolutely continuous. We
assume [p,, |z|*7)(z)dr < oo and wf € L*(R™).

Then there exists a unique strong solution x; for
0<t<Tto (1) with z. € L3(Q,F, Py, C(R™ x
[0,77)). (where C(R™ x [0,T]) denotes the space
of R™-valued continuous functions on [0, ). Also
y. € C(R™ x [0,T]) endowed with the sup-norm,
Le., [lyll = subg<s<y yel-

We also assume throughout that for all 8 € ©
A5. fp, 0p and hy are continuously differentiable
with respect to the parameter 6. The derivatives
0fy/00 and Ohy/06 are measurable and bounded
functions.

To introduce the gauge transformation assume
A6. hy(x,s) has continuous and bounded first
and second derivatives wrt  and bounded first
derivative wrt ¢. (This is relaxed for piecewise
linear hy(z) where we use Tanaka’s formula).

Objectives The aim of this paper is three-fold:
(1) Derive robust fixed-interval smoothers for
E{z:|Yr} that do not involve stochastic integrals.
(ii) Derive robust fixed interval smoothers for
functionals of the form

t t
m=m+/ﬂ%mm+/ﬁm%Mm
0 0

+A¢mmM 3)

where a : R x R* - R, §: R" x R* —» R™,
v : R™ — R" are Borel measurable and bounded
functions. £ is assumed once differentiable in z.
Our aim is to compute the smoothed estimate
E{H|Yr}, t € [0,T] using robust forward and
backward filters. Such computations arise in com-
puting the maximum likelihood parameter esti-
mate via the EM algorithm — see Sec.2. The
same problem is considered in (Campillo and LeG-
land, 1989) where two-sided stochastic calculus
was used to compute E{H;|YVr}.

To motivate the robust smoothers consider com-
puting the smoothed estimate of the last term in
(3). One would have liked to have interchanged
the conditional expectation and the integral. How-
ever, the resulting expression "’ f(f E{y'(zs)|Vr}dys "
is not an Ito integral since the integrand is not
adapted to the filtration {V; : 0 <t < T}. In
(Campillo and LeGland, 1989), it is shown that
the above integral can be interpreted as a Sko-
rohod integral and requires the use of two-sided
stochastic calculus. The above integral is inter-
preted in (Dembo and Zeitouni, 1989) as a gener-
alized Stratonovich integral. In Sec.3, by express-
ing the smoothers in robust form, the smoothed
estimate E{H;|Yr} are computed using ordinary
(non-stochastic) integration.

(iii) Using the robust smoothers in Step (ii),
compute maximum likelihood parameter estimate
(MLE) of 6 given the observation history V.

Motivation: The EM Algorithm: The EM

algorithm for ML parameter estimation serves as

a primary motivation for deriving smoothers for

functionals of the state of the form H; defined in

(3). Each iteration of the EM algorithm consists

of two steps. } R

Step 1. (E-step) Set # = 6; and compute

Q(6,6) = Eg{log 7p¢ | Yr}.

Step 2. (M-step) Find §j+1 € argmax Q(6,6;).
e

The sequence generated {6/?\] ,Jj > 0} gives non-

decreasing values of log likelihood ﬁ(éj). It is
shown in (Campillo and LeGland, 1989) that

Q(0,6) = E; {logAaé | yT} where log A% con-
tains terms of the form

fOT [ho(zs,8) — hyj(xs, s)] [dys — ho(zs,s)ds], etc.
Thus computing Q(6,6) in the E-step involves



computing fixed interval smoothed estimate of
functionals of the state of the form H; in (3).

Preliminaries: To simplify notation, reference to
the parameter 6 will be dropped until Sec.4.2.
We start with (Q,F, P) such that under P (i)
w is r-dimensional Brownian motion and {z;} is
defined by (1). (ii) {y:} is n-dimensional Brownian
motion, independent of w and xo, and (y), = I.

Consider the exponentials Ay = Ag ¢ where

12
At17t2 = exp </ (h’(ﬁlﬁs, S) dys
t1
1 [t
— = W (xs,s)h(ws,s) ds), t1,t2 € [0,T]

2 /,,
(4)

If we define a measure P in terms of P by
setting Z—§| g = A; then Girsanov’s theorem
(Bensoussan, 1992) implies that under P, dy; =
h(zw¢,t) dt+de;. and {z;} satisfies (1). However, P

is a more convenient measure with which to work.

Let ¢ € C?(R™) be an arbitrary "test” function
with compact support. Define the inner product

nd) 2 [ @b )

The following result is standard.

Lemma 2.1. Suppose the measure valued process
E{A; ¢(x¢)|V:} has a J; measurable density func-
tion g : [0, T] x R™ x  — R. Then

Bl =S G ©

Fixed interval smoothing is concerned with com-
puting conditional mean estimates E{¢(z;)|Vr},
t € [0, T']. Consider the measured value process

v(@) = E{Arir Mz = o}, vor(@) =1

(7)
qi(z) is the forward un-normalized filtered density
and v (x) is the backward filtered density.

Lemma 2.2. The fixed-interval smoothed estimate
E{¢(z:)|Vr} is given by

Jom O(x)q: (@) v (x)da
me ge(x)v (x)dx

_ (Bqi, vt)

E{¢(z:)|Vr} = © {ars ve)

3. ROBUST FIXED INTERVAL SMOOTHING

Notation: Q = o(x¢)o'(x¢), &(z) = 1/e(x)

ez) = exp { / W, )y — / t S (e, 9)h(z, 5)ds|
(8)

L(6) = yT{QV?0] + 'V o)
L*(9) = 5T [V2(Q9)] — divlfo]

3.1 Robust Fized Interval State Smoothers

It is well known that ¢;(z) evolves according to

q(z) = qo(x)-l-/o L* (gs(x)) ds+/0 W (x,5)qs(x)dys

initialized by ¢o(-) = mo(-). Define the robust
forward filtered density

qi(x) 2 € q¢(),

o (2) = qo(2) (10)

Theorem 3.1. (Robust Forward filter). @ satisfies
the following non-stochastic parabolic partial dif-
ferential equation

8@ (IL‘)
ot

= &L" (€ qt)

(11)

Furthermore, |, 2 (G, ) /{q@t, 1) defines a lo-
cally Lipschitz version of E{x|);}.

Define the robust backward filtered process as

’ljt(CU) = EtUt(ZU) (12)

Theorem 3.2. v, satisfies the non-stochastic back-
ward parabolic pde

ov
a_tt = _etL(Et/Ut);
The fixed interval smoothed estimate is
Jam 8(2)3(2)0 (z)dz
me Gt (x) (x)dx

’UT(ZL') = €T (13)

_ (B, )
(e, 0g)
(14)

E{¢(z:)|Vr} =

Proor. Choose ¢(x) = 1 in Lemma 2.2. This
yields (g;,v:) = E{A7|Yr} which means that
(gt,ve) is independent of time ¢. Now from (10)
and (12)

(qe,v) = (&Gt ve) = (G, €10e) = (q@t, V)

meaning that (:,7:) is independent of time ¢.
Thus d(G,v:)/dt =0, P a.s. But

d,_ . 6(] _ _ 81_115
E(Qt;“t>—<8tavt>+(fh; dt>
P
= (&L" (&:G), 0¢) + (T, %)
_ Ou —

= (G, &L (&7¢) ) + (T, E) (P as.)

which means that o; satisfies the backward non-
stochastic parabolic pde (13).



3.2 Robust Fized-Interval Robust Smoothers for _ _ ~
Functionals of the State o) = / exp(¥(, 1)) 5¢(C) v (w, ) dC
_ 1, -_ _
We consider robust fixed interval smoothing of H; vi(,¢) = exp <_¢($> t) - §$’(Zt L+ 00tz + (O
defined in (3). Define the measure valued process 1. o
At(z) and its robust version A¢((z) as - i(lt(o — C'y)' S (1:(C) — C'yt))

E{A:H;¢(z)|Vi} = (A, ), Mel@) = &Me()
From Theorem 3.2 it follows that
(e, ve) (At 0r) 2t

B{H:\Yr} = (e, ve) - (@, U¢) - (@, 0t) (1)

51(0) = Krexp(—3¢5iC + (') (18)

Here the terms [;(¢) and S; are defined as

T
W(Q) = ST e+, S = / B (A+C'C)d, ds
t

A . . . .
where z; = (), 0;) denotes the un-normalized and the M x M matrix ®; satisfies the equation

robust fixed-interval smoothed estimate. A - -
e —(F +Z¢(A+C'0)) 2y, e =1
Theorem 3.3. (Filtered and Robust Smoothed Estimate).

The statistics th, ¥; and p; satisfy

t ~
Ar() = Hogo(x) + /0 €L (€sAs) ds % =37'QU = C'ys) — F'(Ily = C'yu) + e, I =0
: ¢
_ _ dx = _ _ _ _
+/ [a(ways)qs(m) + ﬁ,(ways)f(xa S)qs(w) d—tt = Et(A + C’C)Et - Q + tht + EtFtla ET =0
0
s
- EsdiV [Qﬁ(wa ys)es(IS(x)]:| ds + VI(x)gt (:U)yt /jt = _@;C’yt + (i),TC,yT + /t (I);F.;C,ysds
t T B T _ B
— 'y'(a:)/ ysésL* (e5qs)ds (16) +/t P pusds -I-/t D (As + C'C)X4lsds, pr =0
0

t
2zt = (HoQo, Vo) + / (ags + B' fas + (V@ ve)ye Remark: For linear dynamics with initial distribu-
0 tion mo(+), simply set ¢¥(z,t) =0, Ay =0, uz =0

¢ . .
_ EsdiV [Qﬂ%@s] , ’175>d8 _ / ysi('qus,775>d8 and (St = 0. Further, if 71'0(') ~ N(il?o,zo) then
o ds the Kalman filter (in robust form) follows with

. . A
Furthermore, z:/(q:, 0¢) is a locally Lipschitz ver- conditional mean state estimate m; = E{z¢|};} =
sion of E{H;|Yr}. Y. (7t + C'y:), and the Kalman state covariance

S £ B{(w; — mye)(zr —my)'} (Riccati equation).

4. EXAMPLE 1: ROBUST Benes 4.2 Mazimum Likelihood Parameter Estimation

SMOOTHERS
Consider the linear Gaussian system with ¢ =
4.1 Robust Smoother for State 0, Gaussian initial conditions and (F,o,C) in
controller canonical form. Let § = [c1,...,¢cp]
Counsider (1) and (2) with f(x¢,t) = g(x,t) + denote the parameter vector. The EM algorithm
Fiay, o(xy,t) = oy, h(xe,t) = C. For convenience outlined in Sec.2 can be used to compute the MLE
assume y; is a scalar valued observation process of . The M-step yields the estimates

(i.e., n =1). and C € R'*™ is time-invariant.

T -1 T
Assumption: (Bensoussan, 1992, pg 199): Suppose C= <E(5 {/0 xsx,sdsWT}) E; {/0 xsdysD}T}

(z,t) in CL(R™, RT) such that ;

m Example: Consider computing E Tsdys|Y
QViat) = glat), aekr. (1) oomple O buting E{J, | Vr}
which is required above. Define H} = [J €]z dys.

Assume 9 (x,t) satisfies the following Benes non- Then from (16) with o = 8 = 0 and y(z;) = e}
linearity condition %—f + :Tr (Q: V) . , ¢ d
E{H;|Yr} = ¢€; [mtTyt —/ Ys <£msT) dS}
0

where %ms‘T can be computed from the robust
where A; € R™*™ gatisfying Ay + C' C > 0, forward and backward Benes filters.
ue € R™ and 6; € R.

1 1
+§(V¢)1Qtv¢ +a'F{Vy = §$' Apa+a' py + O

Remark: The above robust smoothed estimate is
Robust backward Benes filter: o7 (z) = er(z) identical to the generalized Stratonovich integral
and for t < T, used in (Dembo and Zeitouni, 1989).



5. EXAMPLE 2: PIECEWISE LINEAR
SYSTEMS

Here we consider piecewise linear dynamics and
observation equation. In general the filtered den-
sity for such models does not exist. So the Zakai
equations will be considered in weak form, i.e., dis-
tributional sense. In (Pardoux and Savona, 1988)
and (Savona, 1988) it is shown that the robust for-
mulation of the weak Zakai equation allows for the
construction of a suboptimal filter for computing
state estimates of the piecewise linear system. The
approximate filter in (Pardoux and Savona, 1988)
consists of a bank of linear Kalman type filters
with non-Gaussian initial conditions, each filter
operating on one of the piecewise linear segments.
In the same spirit as (Pardoux and Savona, 1988)
we show the robust formulation can be used to
construct approximate smoothers.

Signal Model: Consider the scalar piecewise lin-
ear model (1), (2) where f(z;) = Yoh I(x; €
Pp)(agxy + bi), ho(x) = Zszl I(xy € Py)(cras +
dy), o(t) assumed known. Here Py, k=1,2,..., K
denotes a finite partition of R. Let Br € R,
k=1,...,K — 1 denote the boundary points of
P,...,Pg.0 = (c1,...,ck,d1,...,dk)" denotes
the parameter vector to be estimated. hg(z) is as-
sumed continuous in , i.e., ¢y By +di, = cx1 B+
di+1. It is well known (Pardoux and Savona, 1988)
that (1) has a unique weak solution.

The EM algorithm for estimating 6 requires com-
putation of GE:) = Ey, {fOT ziI(zs € Pk)dys|yT}
and A £ By, { S iz, € Pk)ds|yT} for k =

1,....,K, ¢+ = 0,1,2. This motivates deriving
smoothers for state functionals Hy with g = 0.

Define 7, (¢H;) = E{Aip(xe) He| Vi }, wyyr(¢Hy) =
E{Ar¢(z:)H|Y7}. The weak Zakai equation is

Ti(pHy) = To(¢Ho) + /0 t {ﬁs(w) + 7s(da)

i frs(awh)} s+ | t {ﬁs(ﬂﬁv) T 7 (GH,h) | dy,

Unlike the proof of Theorem 3.3, one cannot
postulate the existence of the densities ¢; or A:.

Approximate Model: Let [a] denote the integer
part of a € R Let § > 0 denote a fixed real
number. Consider the approximated version of the
piecewise linear model on (Q, F, P%) with

K
fd(l‘,t) = Z 1 (x[t/5]5 € Pk) (agwy + b)
k=1
K
hd(w,t) = ZI (:U[t/g]g € Pk) (ckxy +di) (19)
k=1
o CR x[0,T]) x [0,7] - D(R x [0,T]), and
h® : C(R x [0,77]) x [0,T] = D(R,[0,T1]).

We need to explicitly refer to the trajectories of
z¢ and y;. Let Q' = C(Rx[0,7]) and Q% = C(Rx
[0,77]) with elements w} = z;(w) € Q' and w? =
yi(w) € 02 where w = (w},w?) € 2 =0 x Q2.

Since (1), (19) is linear stochastic differential
equation on each interval [id, (i + 1)J) with coeffi-
cients depending on z(id), it has a unique strong
solution. Similar to (4) define for ¢1,¢, € [0, 7]

to
AZ, (wn,w2) = exp ( | 0 du,

1 [ ‘
- 5/ (R’ (s, 5))* ds). (20)
t1
Since fo and A% have linear growth |f°(z,t) +
he(z,t)] < ¢(1 + |z4]) for some constant ¢ € R,
A% is a martingale. As in Sec.2, define P° by
dP?/dP°|g, = A{. Define € (z), & (x) (8) for (19).

For any ¢ € C?(R™), define 70 (¢) = E*{Al¢p(2,)| Vs } =

<¢7 qg>7 7_T?_((p-H—t) = Ed{AgHt(ﬁ(mtﬂyf} = <¢7)‘g>7
11?(35) = E {AiTD}t,T Vize =alt}, ﬁfw(‘f’Ht) =
E{ALHip(0) V1) = (b, 20), @ () = €qf(w),
A =N, 0] = elv)(w), 2 = (N, 7)

The aim of this section is to show:

(i) The robust forward filtered density g (z) and
backward process 7} (z) of the approximate model
(19) can be computed by a bank of K parallel
Kalman type forward and backward filters with
non-Gaussian initial conditions — see Sec.5.1.

(ii) As § — 0, ﬁf‘T@Ht)(wz) — Ty r(¢H)(w?),
Vw? € Q2 (ie., pathwise) V&t > 0. Thus the
smoothed distribution for the approximate model
(19) converges to smoothed distribution for the
piecewise linear model. The robust formulation is
used in the convergence proof — see Sec.5.2.

5.1 Approximate Smoothing Algorithm

For each of the piecewise linear segments k =
1,..., K define & x(x) = 1/e ()
1.

Eci (d?)t )

Li(¢) = %Tr[QV%b] + aprVe

The estimate E?{¢(z;)|Y7} for approximate model
(19) is computed by the following algorithm:

etk (T) = exp |cp(T)ye —

Robust Forward Filter over ¢ € [id, (i+1)d), where

i=0,1,...,[T/d]:

Step 1. Re-initialize: At t = i initalize with

non-Gaussian initial condition:
Wr=T@I(xeP), k=12, K

Step 2. Propagate: Run K robust Kalman
filters for non Gaussian initial condition (see
Sec.4.1) on t € [id, (i + 1)d) as

agﬁk (z)

= * ~i0
ot = EtykLk(etqz,k)



Step 3. Recombine: At time ¢t = (i + 1)J,

K
z+1 E : +16k

Step 4: Set i := ¢+ 1, go to Step 1.

The robust backward filter over ¢ € (i, (i + 1)d]is
_(z+1)5 _

(i+1)6,k =
17‘(5i+1)5(a:)1(a: € Py); propagate according to (13);

similar: Reinitialize at ¢t = (i + 1)d as ©

recombine at ¢ = id to obtain v%(z), etc.

The smoothed state estimate is computed as

E{a|Vr} = (xq},00)/(q}, 0f) and E° {H,|Yr} =
20 /(@ ,v¢) where z{ is computed by (16).

5.2 Convergence of Approzimate Smoother

Introduce a double measure change by defining

T T
Ni(w!) = exp l | sasan 5 | (f(w,s))zds] ,

T T
Ni‘;(wl) = exp [/0 f‘s(as,s)dasS - %/0 (f‘s(x,s))QdS]

Let P denote the standard Wiener measure. Gir-
sanov’s theorem implies that

(mirs Hig) (w?) = E{Ax No Hyp(4)| Y},

(mjyp Hid)(w?) = B{AL N Hy ()| Vr }-

Theorem 5.1. As § — 0, the smootlled estimate
<7Tf|TaHt¢>(w2) (my 7, Hip)(w?), P a.s. for all
t € [0,7] and w? € Q2.

To prove Theorem 5.1 we work with robust ver-
sions (i.e. Lipschitz continuous versions in w?) of
<7Tt|T7Ht¢>(w2) and <7rg‘T7Ht¢>(w2)7 w2 € Q2 =
C(R x [0,T]). To obtain these robust versions
integrate by parts the stochastic (dY') integrals
appearing in A; (4) and Ay (20. This requires com-
putation of the differentials of h(z,) and h®(z, s).

Lemma 5.2. As 6 — 0, Agﬂ(-,
a.s. for all w? € Q2

w?) = Ap(-,w?), P

ProoF. Because the gradient of h jumps across
each boundary point By one needs to use Tanaka’s
formula for semi-martingales (instead of Ito’s for-
mula) which yields P a.s.

h(z¢) = h(zo) -I-/ Vh(xs)des

+2/

where Vh(z) = Zk:l I(zs € Py)cy, and LBk ()
denotes the local time at By of the process x;.

ALY (x) (1)

t
Thus A; = exp (yth(xt) — / ysVh(zs)dxs
0

_ %g/ot ysI(zy = By,)dLP* (z) — % /Ot(h(a:s))zds)

Consider evaluating A%: It is easily shown P a.s.

t
AS = exp{ythﬁ(m,t) - / 4o VI (3, 5)dz,
0

- Z Z y]6 l‘]é

k=1 jeJ(d;i,t)

/|h‘5ms|ds}

where VR (z,s) = Zk:l I(zis € P)cpifio <s <
(i +1)0; J(d;1,t) is the set of integers j such that
jo < t and the line segment joining x(;_;)s and
x5 intersects By. Finally from Tanaka’s formula

> yislwa)(Nilejs) — As(@(—1)s)) (wjs — )

JEJ(8;3,t)

- R

From Lemma 5.2, A3 NS — ArNr, P a.s. for all
w? € Q2. Also Yw?, it can be shown that

B{(N()Z3(,0%)"} < clow?) V>0

which implies that A%(-,w?) NS is uniformly inte-
grable. Hence Theorem 5.1 follows.

= By)dLP*(z) P as. and Yw?
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