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Abstract: In this paper, the generalized S(C, A, B)-pairs which is an extension of
generalized (C, A, B)-pair investigated by the present author is introduced for infinite-
dimensional systems and its properties are investigated. And a parameter-insensitive
disturbance-rejection problem with dynamic compensator is formulated and then its

solvability conditions are presented.
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1. INTRODUCTION

In the framework of the so-called geometric ap-
proach, many control problems with state feed-
back or incomplete-state feedback (e.g., decou-
pling problems, disturbance-rejection problems
etc) have been studied for finite-dimensional sys-
tems, see (Wonham, 1984). Further, the notion
of (C, A, B)-pairs was first introduced by Schu-
macher (Schumacher, 1980) and this concept has
been used successfully to design dynamic com-
pensators. After that Curtain extended the ge-
ometric concepts to infinite-dimensional systems
and various control problems have been stud-
ied, see e.g. ((Curtain, 1984), (Curtain, 1986a),
(Curtain, 1986b), (Inaba and Otsuka, 1989),
(Otsuka et al., 1990), (Otsuka, 1991), (Otsuka et
al., 1994), (Zwart, 1988)). On the other hand,
from the practical viewpoint Ghosh (Ghosh, 1986)
and Otsuka (Otsuka, 1999) studied the concepts
of simultaneous (C, A, B)-pairs and of general-
ized (C, A, B)-pairs for finite-dimensional sys-
tems, respectively, and the parameter-insensitive
disturbance-rejection problems for uncertain lin-
ear systems were studied. Further, Otsuka and
Inaba (Otsuka and Inaba, 1997), Otsuka and In-
aba (Otsuka and Inaba, 1998) and Otsuka and
Inaba (Otsuka and Inaba, 1999) extended the
concepts of simultaneous invariant subspaces and
of (C, A, B)-pairs to infinite-dimensional systems.
Further, Otsuka and Hinata (Otsuka and Hi-
nata, 2000) studied the generalized invariant sub-

spaces for infinite-dimensional systems.

The objective of this paper is to investigate
the notion of generalized S(C, A, B)-pairs which
is an extension of (C, A, B)-pairs investigated
by Otsuka (Otsuka, 1999) to infinite-dimensional
systems, and to study the parameter insensitive
disturbance-rejection problem with dynamic com-
pensator for uncertain linear systems in the sense
that system’s operators depend linearly on uncer-
tain parameters.

This paper is organized as follows. Section 2
gives the concept of generalized S(C, A, B)-pairs
and its properties. In Section 3, the parameter-
insensitive disturbance-rejection problem with dy-
namic compensator is formulated and its solvabil-
ity conditions are presented. Finally, Section 4
gives some concluding remarks.

2. GEMERALIZED S(C, A, B)-PAIRS

First, some notations are used throughout this
investigation. Let B(X;Y) denote the set of all
bounded linear operators from a Hilbert space
X into another Hilbert space Y; for notational
simplicity, we write B(X) for B(X;X). For a
linear operator A the domain, the image, the
kernel and the Cy-semigroup generated by A are
denoted by D(A4), ImA, Kerd and {Sa(t);t >
0}, respectively. Further, the dimension and the
orthogonal complement of a closed subspace V are



denoted by dim(V) and (V)*, respectively.
Next, consider the following linear systems
defined in a Hilbert space X :

%x(t) = A(a)z(t) + B(B)u(t),
y(t) = C(v)=(t),

S(a, B,7) :

where z(t) € X, u(t) € U := R™, y(t) €
Y := R’ are the state, the input and the
measurement output, respectively. And operators
A(e), B(B8) and C(v) are unknown in the sense
that they are represented as the forms :

Ale) = Ao+ an A + - + apdy = Ao + AA(0),
B(B) = Bo+ p1B1 + - + B, By == Bo + AB(f),
C(y)=Co+mCi+ - +%Cr :=Co+ AC(y),

where o := (a1, -+, ap) € R?, 8= (B1, -+, 54) €
RY ~v:=(m, - ,7%) € R", Ag is the infinitesimal
generator of a Co-semigroup {S4,(t);t > 0} on X,
A€ B(X)(G=1,-,p), B; € BR™X) (i =
1,--,9) and C; € B(X;RY) (i=1,---,7).

Here, in system S(a,8,v) (Ao, Bo,Co) and
(AA(a), AB(B), AB(3)) mean the nominal sys-
tem model and a specific uncertain perturbation,
respectively.

Since A; (i = 1,---,p) are bounded linear
operators, it remarsk that A(«) always generates
a Cp-semigroup and has the domain D(A(«@)) =
D(Ap) for all @ € RP. Further, from the practical
viewpoint it remarks that the dimensions of input
and output are finite.

Now, introduce a compensator (K,L, M, N)
defined in a Hilbert space W of the form :

d
{ Zw(t) = Nu(t) + My(1), (1)
u(t) = Lw(t) + Ky(t),

where N is the infinitesimal generator of a Cpy-
semigroup {Sn(t);t > 0} on a Hilbert space
W,M € B(R“W),L € B(W;R™) and K €
B(R': R™).

If a compensator of the form (1) is applied to
system S(«, 8, ), the resulting closed-loop system

Sei(a, B,7v) with the extended state space X¢ :=
X @ W is easily seen to be

it o)~ ety PR o)

where X @ W means the direct sum of X and W.
For the closed-loop system S (a, 3,7), define

e
Ay

_ {A(a) + B(B)KC(v) B(B)L
MC(y) N

with domain D(Af 5,

) (= D(4o)® W).
For the system S(a, 83,7), the following invariant
subspaces are introduced.

Definition 1. Let V be a closed subspace of X.

(i) V is said to be a generalized (A4, B)-
invariant if there exists an F' € B(X; R™) such
that

(A(a) + B(B)F)(VND(Ag)) C V for all «, 3.

F(V) = {F € BOX; R™) | (A(0) + BHF)(V

D(A4g)) C V for all o, 8.}.

(ii) V is said to be a generalized S(A4, B)-

invariant if there exists an F' € B(X; R™) such
that

Saa)+B@F(t)V CV for all t >0 and all o, 3.

V(A,B;A) == {V| V is a generalized S(A, B)-
invariant and is contained in a given closed sub-
space A}

F(V) :={F € B(X; R") | Sa)+Bp)r(t)V C
Vfor allt > 0and all @, 3.}.

(ili) V is said to be a generalized (C, A)-
invariant if there exists a G € B(R"; X) such that

(A(a) + GC(7))(VND(A4g)) C V for all a, .

G(V) = {G € B(R; X) | (A(a) + GC()(V N
D(A4g)) C V for all a,v.}.

(iv) V is said to be a generalized S(C, A)-
invariant if there exists a G € B(R"; X) such that

Sae)+eoq )V C V for all £ > 0 and all «, .

V(e;C,A) = {V| V is a generalized S(C, A)-

invariant and contains a given closed subspace ¢.}.

G.(V) = {G € B(R% X) | Sa@+com(t)V C
Vforallt >0and all a,7.}. m

Remark 2.

(i) For the system S(«,3,7v) a generalized
S(A, B)-invariant subspace V has the property
that if an arbitrary initial state £(0) € V then
there exists a state feedback u(t) = Fz(t) which
is independent of a and  such that the state
trajectory z(t) € V for all £ > 0.

(ii) If Ao is a bounded linear operator on X
(i.e., Ag € B(X)), then the statements (i) and (ii),
and (iii) and (iv) in Definition 2.1 are equivalent,
respectively. Further, in this case F4 (V) = F(V)
and G,(V)=G(V). m

For finite-dimensional systems, Schumacher (Scumacher,

1980) first introduced the concept of (C, A, B)-



pair. The following definition is a generalized and
infinite-dimensional version of (C, A, B)-pair.

Definition 3. Let V1 and V3 be closed subspaces
of X. A pair (V4, V2) of subspaces is said to be a
generalized S(C, A, B)-pair if the following three
conditions hold.

(i) V1 is a generalized S(C, A)-invariant.
(ii) V2 is a generalized S(A, B)-invariant.
(i) Vi C Vo. m

For closed-loop system Sg(c, 3,7), the following
definition is given.

Definition 4. Let V¢ be closed subspace of X¢.

(i) V¢ is said to be a generalized A®-invariant
if

Ag 5 ,(VEND(AG 5 .,)) C Ve for all o, 8,7.

(ii) V© is said to be a generalized Sae(t)-
invariant if

S ae ., ()yVec Veforallt >0and all o, 8,v. m

@By

The following lemma is an extension of the results
of Otsuka (Otsuka, 1999) to infinite-dimensional
systems and is used to prove Lemmas 2.6 and 2.7.

Lemma 5. 1f a pair (Vi, Va) of subspaces of X
is a generalized S(C, A, B)-pair such that

q r
> ImB; C Vi C Vo C [|KerC; and A;Va C Vi
=1 =1
(i = 1,---,p), then there exist G € G(V;),
G(B) € B(RSX), F(y) € F(V), Iy €
B(X;R™) and K € B(R*;, R™) such that

= B(B)K +G(B), ImG(8) C Vz,
F(v) = KC(y) + Fy and KerFy OV
for all (8,7) e R xR". m

The following two lemmas play important role to
prove the main Theorems in Section 3.

Lemma 6. 1f a pair (V;, Va) of subspaces of X
is a generalized S(C, A, B)-pair such that

q 4
> ImB; C Vi C Vs C (|KerCi, AiVaC W
i=1 i=1
(=1, ---,p) and Vo C D(Ag), then there exist a
compensator (K, L, M, N) on W := (VaNV;") and
a subspace V¢ of X€ such that V; = 51, Vo = S5
and V¢ is generalized Sy (t)-invariant. m

Lemma 7. Assume that By = --- = B, = 0. If
a pair (V1, V) of subspaces of X is a generalized

S(C, A, B)-pair such that

r P
Vo C {ﬂKerC’i N ﬂKerAi, } ,

=1 i=1

then there exist a compensator (K, L, M, N) on
W = (VoNV;h) and a subspace V€ of X© such that
Vi = $1,Va = Sy and V¢ is generalized Sae(t)-
invariant. m

3. PARAMETER-INSENSITIVE
DISTURBANCE-REJECTION

In this section, the parameter insensitive disturbance-

rejection problem with dynamic compensator for
uncertain linear systems in the sense that system’s
operators depend linearly on uncertain parame-
ters.

Consider the following uncertain linear system
S(a, 8,7, 0,0) defined in a Hilbert space X.

where z(t) € X,u(t) € U :== R™,y(t) € Y =
R', z(t) € Z := R* and £(t) € LY°((0,00); Q) are
the state, the input, the measurement output, the
controlled output and the disturbance which is a
Hilbert space Q valued locally integrable function,
respectively. It is assumed that coefficient opera-
tors have the following unknown parameters.

Ale) =Ao+ o1 A1 + -+ apAdp = Ao+ AA(w),
B(B) = Bo+ B B1+ -+ 8,84 := Bo + AB(p),
C(y)=Co+mC1+ - +7Cr = Co+ AC(y),
D(6)=Do+ 01D1+ -+ 6:Ds := Do+ AD(6),
E(o)=Ey+o1E1+ -+ o.E, := Eg + AE(0),

where A;, B;, C; are the same as system S(«, 3,7)
in Section 2, D; € B(X; R"), E; € B(Q;X) and
Q= (Oél,"',(lp) € Rpa 8= (/61,""/6(1) € Rqa
v := (v, ,vw) € R, := (6, -,65) € R’
o= (01, --,00) € R".

In system S(e, 8, 7,6, 0), (Ao, Bo, Co, Do, Fo)
and (AA(a), AB(B), AC(y), AD(5), AE(0))
represent the nominal system model and a specific
uncertain perturbation, respectively.

If a compensator of the form (1) is applied to
system S(a, 8,7,06,0), the resulting closed-loop
system with the extended state space X°:= X @
W is easily obtained as



Ae {A(a) + B(B)KC(v) B(ﬁ)L}
o uet N |
(o) i— {Eg“)} and D°(5) == [ D(6) 0] .

Then, our disturbance-rejection problem with dy-
namic compensator is to find a compensator

(K,L,M,N) of (1) such that
¢

De(6) / SAZ,ﬁ,w (t —T)E°(0)&(T)dT =0

for all £(-) € LY°¢(0,00;Q), all t > 0 and all
parameters «, 3,7,0,0 € R.

This problem can be formulated as follows.

Parameter Insensitive Disturbance Rejec-
tion Problem with Dynamic Compensator
(PIDRPDC) Given A;, B;, C;, D;, E;, find (if
possible) a compensator (K, L, M, N) of (1) such
that

< S’A;ﬁﬂ(-)ﬂmEe(a) >

— I (t YoSu: (t)(ImEe(a))) € KerD®(6)

for all parameters «, 3, 7,6, o, where L(§2) and the
over bar indicate the linear subspace generated by
the set §2 and the closure in X*¢, respectively.

The following results are extensions of the results
of Otsuka (1999) to infinite-dimensional systems.

Theorem 8.
pair (V4, V2) such that

q t
{ZImBi + ZImEZ} cCVicWC
i=1 =0

{ﬂKerC’i n ﬂKerD,},Aﬂ@ CVi(i=1,--,p)
i=1 =0

and Vo C D(Ag), then the PIDRPDC is solvable.

If there exists a generalized S(C, A, B)-

Sketch of Proof. Suppose that the stated
above conditions are satisfied. Then, it follows
from Lemma 2.6 that there exist a compensator
(K,L,M,N) on W := (V, N V;*) and a subspace
Ve of X¢ such that V; = S7, Vo = S3 and V*©
is generalized S 4. (t)-invariant. Further, it can be
easily shown that ImFE®(o) C V¢ C KerD?(4).
Then,

< SAZM(.)umEB(a) >C < SAZM(-)W@ >

— Ve C KerD®(6)

for all parameters «, 3,7,6,0 which imply the
PIDRPDC is solvable. m

t
Corollary 9.  Assume that V(ZImEi; C, A) and

i=0
V (4, B; ﬁKerDi) have the minimal element Vi,
and the i?nlaximal element V3, respectively. If
iImBi C Vi. C Vi C ﬁKerC’i, A Vg C
%/:11 (i = 1,---,p) and V5 iC:1D(A0), then the
PIDRPDC is solvable. m

The following theorem can be obtained from
Lemma 2.7.

Theorem 10.  Assume that By = --- = By =
0. If there exists a generalized S(C, A, B)-pair
(V1, V2) such that

t
Y ImE; CViCVaC

i=1
T B p
{ﬂKerC’i N ()KerD; N ﬂKerAi} :
i=1 =0 i=1

then the PIDRPDC is solvable. m

Corollary 11.  Assume that By = --- = By = 0.

t

And suppose that V(ZImEi; C,A)and V(A B
i=0

: ﬂKerDi) have the minimal element V7, and the

i=1
maximal element V3, respectively. If

r P
Vi, CVyC {ﬂKerC’i N ﬂKerAi} )

i=1 =1

then the PIDRPDC is solvable. m

4. CONCLUDING REMARKS

In this paper, from the mathematical viewpoint
the infinite-dimensional version of generalized



S(C, A, B)-pair investigated by Otsuka (Otsuka,
1999) for finite-dimensional systems was stud-
ied, and then its properties were investigated.
Further, a parameter insensitive disturbance-
rejection problem with dynamic compensator for
uncertain linear systems in the sense that system’s
operators depend linearly on uncertain parame-
ters was formulated and its solvability conditions
were studied. However, the conditions Va C D(A4y)
for unbounded operator Ag in the main Theorem
3.1 is restrictive one from the viewpoint of appli-
cations. Therefore, it is necessary to investigate
the solvability conditions without assuming the
conditions Vo C D(Ag) as future studies.
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