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Abstract: The problem of robust dissipative control for uncertain nonlinear systems is investigated
in this paper. The uncertainty is described in the form of bounded norm. Both state feedback
control and output feedback control are designed to achieve quadratic dissipativeness for the
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there exist nonnegative solutions of Hamilton-Jacobi inequalities. Copyright © 2002 IFAC
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1. INTRODUCTION

Since the theory of dissipative system was introduced,
it has played an important role in circuit, system and
control. Dissipativeness is a generdization of the
concept of passivity in electrical networks. The notion
of dissipativeness and its application in the stability
analysis for dynamical systems were first discussed by
Willems [Willems, 1972]. Then, Hill investigated the
stability analysis of nonlinear systems based on
dissipative theory [Hill et.al., 1976]. It is accepted that
the theory of dissipative system generalizes the basic
theorems of control systems, such as the passivity
theorem, bounded real lemma, Kaman-Yakubovich
lemma, etc [Fu, 2000].

In recent years, considerable results have obtained on
the synthesis problem of passivity or L,-gain analysis
for dynamical system [Van der Schaft A J, 1992]. Since
the general concept of dissipativity for nonlinear system
includes positive realness, passivity and L,-gain as
special cases, many nonlinear system control design
problems can be regarded as dissipative synthesis
problem.

In this paper, we considered the problem of robust
dissipative control for uncertain nonlinear system. In
the considered system, the uncertainty is described in
the form of bounded norm. Both state feedback control
and output feedback control are designed to achieve
quadratic dissipativeness. The robust dissipative control
problem can be resolved for al admissible uncertainties,
if there exist nonnegative solutions of Hamilton-Jacobi
inequalities.

2. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider the nonlinear dynamical system:
X(t) = f(x(t), w(t))
z(t) = g(x(t), w(t)) (2.1)
X(0) =X,
where X(t) e R" isthestate, W(t)e R™ istheinput,

z(t)e R isthe output, f(-) and g(-) are smooth
real vector functions.

The following definition is the extension of
Definition 3.1.2 of Ref [Van der Schaft A J, 1996].
Definition 1: The state space system (2.1) is passive if
it is disspative with respect to the supply rate
S(w,z) =w'Rz. System (2.1) is strictly input
passive if there exists a symmetric positive matrix
P >0 such that (2.1) is dissipative with respect to
S(w,z) =w'Rw—Zz"Pz. System (2.1) is strictly
output passive if there exist symmetric positive matrices
Q>0 and R>0 such that (2.1) is dissipative with
respect to the quadratic supply rule

S(w, z) =w' Rz—w"Qw.

In our paper, the quadratic supply rateis set as

SOW(t), (1)) = %WT ow-— % IRz 22)



where Q and R are symmetric positive define
matrices.

3. MAIN RESULTS
3.1 Dissipativeness Analysis

Consider the nonlinear system
x=f(x)+g,(x)w

z=h(x) (3.2)
ze RP is the
is input vector. f(X),

where Xe R" is the state vector,
output vector, we R™

0,(X) and h(x) are known smooth functions.

Theorem 1: |If
inequality

V. f+ %nglnglTVXT + % h"Rh<0 (3.2

the following Hamilton-Jacobi

has a nonnegative definite solution V' (x)e C' with
V(0 =0, then system (3.1) with storage function

V (X) is quadratic dissipative with respect to supply
rate S(W, z).
Proof: Along the solution of system (3.1), we have

av(x)
ot S(w, 2)

=V, [ f(X)+g,(x)W] —%WTQW+% Z'Rz

=V f+ 1nglQ‘lngVXT + % h"Rh

L @w-Q 2gIV]) (Qw-Q TgV))

From condition (3.2), we obtain V (X) < S(W, 2) .

Remark 1. If Q and R are identity matrices,
Theorem 1 is reduced to

V. f+ Vg1g1VT+ Lih<o (3.3)
This |sTheorem 2in[Van der Shafter A. J. 1992].
3.2 State Feedback Dissipative Control

Consider the nonlinear system
x=f(x)+g,(x)w+g,(X)u
z=h(x)+k(x)u (3.4
ze R? is the
output vector, We R™ isexogenousinput, ue R' is
control input. f(X), 9,(X), 9,(X), k(X) and
h(Xx) are known smooth functions.

where Xe R" is the state vector,

Theorem 2: |If
inequality

the following Hamilton-Jacobi

v, f +%nglQ‘lngVXT +%hT Rh

—E(\/g +h"RKR™(V,g, +h"RK)" <0
2 xJ2 xJ2

(3.5)
has a nonnegative definite solution V' (x)e C* with

V(0 =0, where R=k"Rk, then under the control
of

u=a(x)=—R*(V,g, +h"RK)" (3.6)
system (3.4) with storage function V' (X) is quadratic
dissipative with respect to supply rate S(W, z) .

Proof: Along the solution of system (3.1), we have

dV (x)
e S(w, 2)

=V, [T (¥ +g,(Xx)w+ g, (X)u]
1 ows Lo
—EW QW+22 Rz

=V, (9 +V, 8, (W, 8, (00U~ Qw
+1hTRh+hTRku +%uTkTRku
=V, f+ V 9,Q7'g/ V] +;hTRh
1 l l
__(QZW Q glv ) (QZW Q gl )

2

(G, T ROR (Y, g, + RO
1 1 1
+=(R2u+R 2(V, g, +h"RK)")"
.
(R2u+ R 2(V, g, + " R)")
when U=a(X)=-R™*(V,g, +h"RKk)"
condition (3.5) holds, we have V (X) < S(W, Z) .

I\)

and the

Remark 2: If Q and R are identity matrices, and

there exists K'[h k] =[0 1], then theorem 2 is
reduced to

V, f+ V 49,0,V xgngVT + ;hTh<0

u= _g;v; (3.7)
Thisis Theorem 16 in [Van der Shafter A. J. 1992].

3.3 Robust Sate Feedback Dissipative Control

Consider the uncertain dynamical system

x= f(X)+Af (X)+ g,(X)w+ g, (X)u

Z=h(x)+ k(x)u (3.8)

ze R? is the

output vector, We R™ isexogenousinput, Ue R' is
2

where Xe R" is the state vector,



control input. f(X), g,(X), g9,(x), k(X) and
h(Xx) are known smooth functions. The uncertainty

Af (X) is assumed as norm bounded function that

satisfies as follows:
Af (X) e Q

={e(x)6(x) 167 ()S(¥) <m’ (x)m(x)} (39
where €(X) and 6(X) are known smooth mappings.
Theorem 3: |If

inequality
V, f+ %nglQ‘lng V] + % h"Rh

the following Hamilton-Jacobi

~ 2,9, + T ROR (Y, g, + " RK)’

+i)ufvxeeTVXT + L mm<o (3.10)

4 A
has a nonnegative definite solution V' (X)e C' with
V(0 =0, where R=Kk"RK, then under the control
of

u=a(x)=—-R*(V,g,+h"RK)"  (31)
system (3.4) with storage function V' (X) is quadratic
dissipative with respect to supply rate S(w, z) .
Proof: Along the system (3.8), using the inequality

V Af (X) =V, e(X)(X)

1 1

<+=A, VeV +—m'm (3.12)
4 A

where A, issome given real constant.

Then, we can obtain Theorem 3.

Remark 3: If Q and R are identity matrices, and
there exists k'[N k]=[0 1], then theorem 2 is
reduced to

1
v, f +§Vx(glgl —Alee’ —g,0; )V,

+Iimhe L mrmy <o
2 2
u=-g,V,
ThisisTheorem 2in[Shen T.L. 1995].

(3.13)

3.4 Output Feedback Dissipative Control
Consider the nonlinear dynamical system

x=f(X)+ 9, (x)w+g,(x)u

z=h(X) +k,(x)u

y =h, (X) + Kk, (X)w (3.14)

where xe R" is the state vector, ye R” is the

measurement output vector, Z€ R® is the penalty
variavhle ,we R™ is exogenous input, ue R" is

control input.  f(X), g,(X), 0,(x), h(x),
h,(x), K,(X) and Kk, (X) are smooth functions
defined on the neighborhood of origin of R". We
assumethat f(0)=0, h(0)=0, h,(0)=0.

In this paper, we design an output feedback control
law of the form:

£=nE.y)

u=a(é) (3.15)
where &(-) € R" isthe state variable of the controller;
n() and o(-) ae smooth functions, satisfying
n(0,0)=0, (0)=0.

The structure of output feedback controller is of the
following form:

¢=1f.()+9.(5)y
u=h(s)

Then, we have the following results:
Theorem 4. If there exist smooth positive definite

function V(X) >0 and smooth semi-positive definite

function W(x,£) >0, VEe RY, Vxe R", which
satisfy the following inequalities:

HRALS +§vxgl<x)ngI (V]

-V, 9,(x) + h" (x)Rk,, (x)]
: R_l[vxgz (x)+h" (X) Rk, ()]

+ 2] (IRR() <0

(3.16)

(3.17)

M I (E) +207 (R EQ MB(x)

+%heT (x£)Q ', (x,£) <0 (3.18)

where

f(xE) = f(X) + g, (Xer(€) + 9, ()Q g, (X)V,
o f.(€) +Gh,(X) + Gk, ()Q g, (})V,]
hy(x.€) = R ?[V,9,(X) + h" (x) Rk, (X)]

+R2a(€)

T _ 9 (X)
D (x,8) = [W, ,ng[Gkﬂ(X)]
9.(6)=G
u=a(s)

then under the control of U, system (3.14) is quadratic
dissipative with respect to supply rate S(w, 2) .
Proof: The closed-loop system can be expressed as

[g] = &)+ W

z=h(x&)



where
U= a(€)
~ [0+ 0,(9a(E)
f(x’é)‘[ f,(€)+Gh,(%) ]
09-| )

h(x,8) = h(x) + k;, (X)x(&)
L et storage function

UxE)=V(X)+W(x,&)>0
By using theorem 1, we have

[U,U:17(68) + AT (< ORA(x.)

~ - Uy
+%[UX,U519(X,§)Q19T(X,é)luﬁ]

¢
FOJ +9.(X)a(8)
f.(5) +Gh, (%)

. 9,(¥)
+ E{ [V,.0] +[W, ’Wg ]}|:Gk21(x):|

v (W
Q70! (%), k3 (X)G'] [ : ]{ T}}
{ 0] |W

+ IV 00+ EKL IR
10,09+ (9er(©)]
~V, 09 +V,8,(9a(®)
+ VG, (9Q 0] (V]
(9 +,(9a(€)
f.(6)+Gh,(¥

9:(X)
Gk, (X)

={lV..0 +[WX,W¢]}[

e
e

Q79 (%), kgl(X)GT][VS }

9, (X)
Gk, (X)

1

+§[VVX1VV§]|:

Ar oT T T WXT
Q79; %),k (X)G ][wg]
+%th(x)Rhl(x) +0" (€)kg, ()R, (%)
N %oﬂ (E)k, () Rky, (ax(€)

V. F(¥) +% 3.()Q g (V]

+ ] (IR
AW W, (%)
+0T (X E)Q B(x)

+ 2R (6£)Q N, (xE)

—[V,9,(X) + h" (x)Rk,, (x)]

: Ril[vx g,(X) + h" (%) Rk, I
<I+I1
when the conditions (3.17) and (3.18) hold, we have the
theorem 4.

3.5 Robust Output Feedback Dissipative Control

Consider the uncertain nonlinear dynamical system
x=f(X)+Af (X)+ g,(X)w+ g, (X)u
z=h (x) + ky, (x)u
y =h,(X) + k(X)W (3.19)
where Xxe R" is the state vector, ye RP is the
measurement output vector, Ze R® is the penalty
variavhle ,we R™ is exogenous input, ue R" is
control input.  f(X), 0,(X), 9,(x), h(X),
h,(x), K,(X) and Kk, (X) are smooth functions
defined on the neighborhood of origin of R". We
assumethat f(0)=0, h(0)=0, h,(0)=0.The
uncertainty Af(X) is assumed as norm bounded
function that satisfies as follows:
Af (X)e Q
={e(X)8(X): 8T (X)S(X) <m" (X)M(X)} (3.20)
where €(X) and &(X) are known smooth mappings.

Theorem 5: If there exist smooth positive definite
function V(X) >0 and smooth semi-positive definite

function W(x,£) >0, Vée R’, Vxe R", which
satisfy the following inequalities:

I:
V(0 +2V,[0,00Q 9] (00+ A eV
-[V,9,(X) + h' (x) Rk, (X)]
: Ril[vx g, (x) + h' (x) Rk, (1"
+£th(X)Rhl(X) +imeSO (3.21)
2 A,
o

W WA F, (48) +2 @ (xE)Q D(x.E)

(W' | 1
+[\NX,W§]E{WT} +7me

4 f



+ % h! (x,£)Q*h,(x,£)<0 (3.22)

where A, and A, are some given rea congtants,

f (%) + g, ()(€) + 9, (NQ g, (V] ]

fo(0)= [ £ () + G, () + Gy ()Q 2, (V]

ho(x.8) = R 2V, g, (¥) +h" () Rk, (X)]

1

+ R20(¢)
' (x,) = [Wx,ng[
| aee
E=|—5 O

0 0

9.(6)=G
u=a(s)

then under the control of U, uncertain nonlinear
system (3.19) is quadratic dissipative with respect to
supply rate S(w, 2) .

9, (x)
Gk, (X)

4 CONCLUSIONS

In this paper, we considered the problem of robust
dissipative control for uncertain nonlinear systems.
Both state feedback control and output feedback control
are designed to achieve quadratic dissipativeness. The
robust dissipative control problem can be resolved for
all admissible uncertainties, if there exist nonnegative
solutions of Hamilton-Jacobi inequalities.
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