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1. INTRODUCTION

Since the theory of dissipative system was introduced,
it has played an important role in circuit, system and
control. Dissipativeness is a generalization of the
concept of passivity in electrical networks. The notion
of dissipativeness and its application in the stability
analysis for dynamical systems were first discussed by
Willems [Willems, 1972]. Then, Hill investigated the
stability analysis of nonlinear systems based on
dissipative theory [Hill et.al., 1976]. It is accepted that
the theory of dissipative system generalizes the basic
theorems of control systems, such as the passivity
theorem, bounded real lemma, Kalman-Yakubovich
lemma, etc [Fu, 2000].

In recent years, considerable results have obtained on
the synthesis problem of passivity or L2-gain analysis
for dynamical system [Van der Schaft A J, 1992]. Since
the general concept of dissipativity for nonlinear system
includes positive realness, passivity and L2-gain as
special cases, many nonlinear system control design
problems can be regarded as dissipative synthesis
problem.

In this paper, we considered the problem of robust
dissipative control for uncertain nonlinear system. In
the considered system, the uncertainty is described in
the form of bounded norm. Both state feedback control
and output feedback control are designed to achieve
quadratic dissipativeness. The robust dissipative control
problem can be resolved for all admissible uncertainties,
if there exist nonnegative solutions of Hamilton-Jacobi
inequalities.

2. SYSTEM DESCRIPTION AND PRELIMINARIES

  Consider the nonlinear dynamical system:
))(),(()( twtxftx =�

))(),(()( twtxgtz =                   (2.1)

0)0( xx =
where nRtx ∈)(  is the state, mRtw ∈)(  is the input,

pRtz ∈)(  is the output, )(⋅f  and )(⋅g  are smooth

real vector functions.

  The following definition is the extension of
Definition 3.1.2 of Ref [Van der Schaft A J, 1996].
Definition 1: The state space system (2.1) is passive if
it is disspative with respect to the supply rate

RzwzwS T=),( . System (2.1) is strictly input

passive if there exists a symmetric positive matrix
0>P  such that (2.1) is dissipative with respect to

PzzRwwzwS TT −=),( . System (2.1) is strictly

output passive if there exist symmetric positive matrices
0>Q  and 0>R  such that (2.1) is dissipative with

respect to the quadratic supply rule

QwwRzwzwS TT −=),( .

  In our paper, the quadratic supply rate is set as
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where Q  and R  are symmetric positive define

matrices.

3. MAIN RESULTS

3.1 Dissipativeness Analysis

Consider the nonlinear system

wxgxfx )()( 1+=�
)(xhz =                             (3.1)

where nRx∈  is the state vector, pRz∈  is the

output vector, mRw∈  is input vector. )(xf ,

)(1 xg  and )(xh  are known smooth functions.

Theorem 1: If the following Hamilton-Jacobi
inequality
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has a nonnegative definite solution 
1CxV ∈  with

00( =V , then system (3.1) with storage function

xV  is quadratic dissipative with respect to supply

rate ),( zwS .

Proof: Along the solution of system (3.1), we have
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From condition (3.2), we obtain ),()( zwSxV ≤� .  

Remark 1: If Q  and R  are identity matrices,

Theorem 1 is reduced to

   T
x

T
xx VggVfV 112

1+ 0
2

1 ≤+ hhT        (3.3)

This is Theorem 2 in [Van der Shafter A. J. 1992].

3.2 State Feedback Dissipative Control

Consider the nonlinear system

uxgwxgxfx )()()( 21 ++=�
uxkxhz )()( +=                     (3.4)

where nRx∈  is the state vector, pRz∈  is the

output vector, mRw∈  is exogenous input, rRu∈  is

control input. )(xf , )(1 xg , )(2 xg , )(xk  and

)(xh  are known smooth functions.

Theorem 2: If the following Hamilton-Jacobi
inequality
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has a nonnegative definite solution 
1CxV ∈  with

00( =V , where RkkR T= , then under the control

of
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system (3.4) with storage function xV  is quadratic

dissipative with respect to supply rate ),( zwS .

Proof: Along the solution of system (3.1), we have
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condition (3.5) holds, we have ),()( zwSxV ≤� .  

Remark 2: If Q  and R  are identity matrices, and

there exists ]0[][ Ikhk T = , then theorem 2 is

reduced to
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This is Theorem 16 in [Van der Shafter A. J. 1992].

3.3 Robust State Feedback Dissipative Control

  Consider the uncertain dynamical system

  uxgwxgxfxfx )()()()( 21 ++∆+=�
  uxkxhz )()( +=                      (3.8)

where nRx∈  is the state vector, pRz∈  is the

output vector, mRw∈  is exogenous input, rRu∈  is



control input. )(xf , )(1 xg , )(2 xg , )(xk  and

)(xh  are known smooth functions. The uncertainty

)(xf∆  is assumed as norm bounded function that

satisfies as follows:
   Ω∈∆ )(xf

 )}()()()(:)()({ xmxmxxxxe TT ≤= δδδ   (3.9)

where )(xe  and )(xδ  are known smooth mappings.

Theorem 3: If the following Hamilton-Jacobi
inequality
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has a nonnegative definite solution 1CxV ∈  with

00( =V , where RkkR T= , then under the control

of
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system (3.4) with storage function xV  is quadratic

dissipative with respect to supply rate ),( zwS .

Proof: Along the system (3.8), using the inequality
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where fλ  is some given real constant.

  Then, we can obtain Theorem 3.             

Remark 3: If Q  and R  are identity matrices, and

there exists ]0[][ Ikhk T = , then theorem 2 is

reduced to
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This is Theorem 2 in [Shen T.L. 1995].

3.4 Output Feedback Dissipative Control

  Consider the nonlinear dynamical system

uxgwxgxfx )()()( 21 ++=�
uxkxhz )()( 121 +=
wxkxhy )()( 212 +=                    (3.14)

where nRx∈  is the state vector, pRy∈  is the

measurement output vector, sRz∈  is the penalty

variavble , mRw∈  is exogenous input, rRu∈  is

control input. )(xf , )(1 xg , )(2 xg , )(1 xh ,

)(2 xh , )(12 xk  and )(21 xk  are smooth functions

defined on the neighborhood of origin of nR . We

assume that 0)0( =f , 0)0(1 =h , 0)0(2 =h .

  In this paper, we design an output feedback control
law of the form:

),( yξηξ =�
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 where vR∈⋅)(ξ  is the state variable of the controller;

)(⋅η  and )(⋅α  are smooth functions, satisfying

0)0,0( =η , 0)0( =α .

  The structure of output feedback controller is of the
following form:
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     )(ξchu =                         (3.16)

Then, we have the following results:
Theorem 4: If there exist smooth positive definite
function 0)( >xV  and smooth semi-positive definite

function 0),( ≥ξxW , vR∈∀ξ , nRx∈∀ , which

satisfy the following inequalities:
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then under the control of u , system (3.14) is quadratic

dissipative with respect to supply rate ),( zwS .

Proof:  The closed-loop system can be expressed as
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theorem 4.                                  

3.5 Robust Output Feedback Dissipative Control

  Consider the uncertain nonlinear dynamical system
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where nRx∈  is the state vector, pRy∈  is the

measurement output vector, sRz∈  is the penalty

variavble , mRw∈  is exogenous input, rRu∈  is

control input. )(xf , )(1 xg , )(2 xg , )(1 xh ,

)(2 xh , )(12 xk  and )(21 xk  are smooth functions

defined on the neighborhood of origin of nR . We

assume that 0)0( =f , 0)0(1 =h , 0)0(2 =h . The

uncertainty )(xf∆  is assumed as norm bounded

function that satisfies as follows:
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where )(xe  and )(xδ  are known smooth mappings.

Theorem 5: If there exist smooth positive definite
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where fλ  and fλ~  are some given real constants,
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then under the control of u , uncertain nonlinear
system (3.19) is quadratic dissipative with respect to
supply rate ),( zwS .

4 CONCLUSIONS

  In this paper, we considered the problem of robust
dissipative control for uncertain nonlinear systems.
Both state feedback control and output feedback control
are designed to achieve quadratic dissipativeness. The
robust dissipative control problem can be resolved for
all admissible uncertainties, if there exist nonnegative
solutions of Hamilton-Jacobi inequalities.
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