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A VARIATIONAL INEQUALITY FOR A CLASSOF
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Abstract: In this paper, an optimal measurement feedback control problem that yields an
almost-dissipative closed loop system is considered. Using information state ideas and
the definition of the optimal cost presented, a dynamic programming equation is derived.
Incremental analysis yields a corresponding variational inequality (V1) which naturally
generalizes the information state based partial differential equation (PDE) associated with
measurement feedback nonlinear H-infinity control. In theory, this variational inequality can
be used to synthesize an optimal measurement feedback controller which guarantees that the
closed loop system almost satisfies a given dissipation property. This “almost-dissipation”
property admits a weaker form of stability for the closed loop system, allowing presistence
of excitation in the absence of disturbance inputs. Finally, certainty equivalence control is
investigated as a special case of the results presented.
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1. INTRODUCTION of a measurement feedback dissipative control prob-

lem into traditional state estimation and state feedback

Dissipative systems theory (Willems, 1972; Hill and problems is not in general possible, the information

Moylan, 1976; Hill and Moylan, 1980) has wide rang-  state controller overcomes this problem via the feed-
ing implications and applications in control theory. pack of theinformation statenstead (the information

One of the most popular of these in recent times has state is a function which evolves in time according to a

been nonlineaH ® control. partial differential equation (PDE) dependent on past

As a design method for nonlinear robust control, non- Plant measurements and applied controls). That s, the
linear H* control was first explored geometrically in traditional measurement feedback problem is replaced

(van der Schaft, 1992; Isidori and Astolfi, 1992). The by an equivalent information state feedback problem.

more general information state approach of (Basar and|nformation state control thus consists of a dynamic
Bernhard, 1995; Helton and James, 1999) has subsecontroller which maps past plant measurements and
quently produced significant advances in the under- controls to present controls via the information state
Standing of the measurement feedback control prob— and an information state control p0||Cy When con-

lem. nected in feedback with the nonlinear plant, the result-

Information state control provides the theoretical tools N9 information state controller yields a closed loop

for designing measurement feedbad® controllers system with.a prescribed dis§ipation property. In the
and, more generally, dissipative controllers for non- H" case, this means an,-gain bound from distur-

linear systems. Although decoupling (or separation) Pances to outputs for the closed loop system. (This is
equivalent to the closed loop being dissipative with an

L, supply rate.)
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In this paperthefirst stepin desiginganalogais con-
trollersto yield “almost-dssipative” closedloop sys-
temsis corsidered.Theimportart genealizationhere
is thata prescrited dissipationproperty for theclosed
loop systemis almostmet, but not quite. This means
thatthe attendat (typicdly asymptdic) stability of a
dissipatve closedloop systemis wealered, allowing
practicd stability. Hencetrajectorieof thecontrdled
plantmay corvergeto someneigbairhaod of the ori-
gin.

Almost-dissipatia is definedin this paperby includ
ing an offset in the supply rate usedto define the
conventioral dissipationpraperty, in the sameway
asin otherpracticalpropeties suchasinput-to-state
practicalstability (Z.P. Jiang,1994 and power gain
(practica L,-gair) analysigDowerandJames19%).
Using this notion of almost-dssipation,an optimiza-
tion problem is definedand the correspndirg dy-
namicprogammirg equatio derived. Incrementally,
this equatia is showvn to correspondto a variatioral
inequality (V1) which naturallygenealizesthe infor-
mationstatebasedPDE of (HeltonandJames199).
In thespecialcaseof certaintyequivalerce,anexplicit
solutionof this VI is provided.

All omitted prods will apper in a later article
(Dower, 20@).

2. PRELIMINARIES

We considemonlinear plantsG of theform

X(t) = F(x(t), u(t),w(t)),

y(t) = g(x(t),w(t)),

Z(t) = h(x(t), u(t)), 1)
where f, g andh arezeroat zero.Herex(t) € R" is
thestatew(t) € R%is thedisturbare,u(t) € R™is the

contrd, y(t) € RP isthemeasuremerandz(t) € R" is
the perfamancemeasure.

We assumehatg is invettible in the sensethatthere
existsafunction g* : RP x R" x RS — RS suchthatfor
ary triple (y,x,w) = (y(t),x(t),w(t)) € RP x R" x RS
with y(-), x(-) andw(-) satisfyingsystem(1), there
existsav € R® suchthat

W= g#(ya X, V)a 2

wherefor any x e R",

y=0(xg"* (¥, x,v)),
w=g¥(gxw),x,w).

Remark2.1. Invertibility of function g is utilized in

the H” case(Helton and James,1999 so that the
optimal contiol prodem of interestcanbe expressed
as an optimization over cortrols and measurerants

ratherthancontrds anddisturbances.See(Heltonand
James199) for detailsrelevart to “reversingarrons”
in thatcase.

3. ALMOST-DISSIFRATIVE SYSTEMS

System(1) is almost-dissipatie (or practically dissi-
pative) with respectto supplyrater : RSx R" —+ R
if thereexistsalocally boundednomegative function
V :R" — R andarealnomegative offsetA suchthat

T
Vo) + [ rwes)
0

for all initial statesx, € R", all disturbamesw €
#[0,T] andall time horizons T > 0. Here, #[0,T]
is the spaceof inputsfor which the integral in (3) is
finite. We assumehefollowing:

9)ds > VX(T) =AT  (3)

(A1) Thesupplyratesatisfiegheinequality r(0,z) <
OforallzeR".

Note thatin the dissipatve (A = 0) casethis corre-
spond to enegy liberationin the absenceof distur
bances.

Thefollowing resultlinks almost-dissipatiomvith the
correspondiny input/outputpropaty.

Theoem3.1. A systenis almost-dissipatie with off-
set A iff thereexists a locally bounded nonregative
fundion 8 : R" — R suchthat

)
/ 9)ds < B(x)+AT ()
0

forallx, e R", allwe #[0,T] andall T > 0.

4. THE INFORMATION STATE AND THE
OPTIMAL CONTROL PROBLEM

Using the notion of information state (Helton and

James 1999, a costfunction is definedin termsof

the supplyrate, offset and contoller. Resultslinking

this cost function to the almost-dissipatie systems
property arepresented

The information state p;*Y(x) (Helton and James,
199) capturs the worst possibleintegrated cost for
all trajectoriesof system(1) given the final statex,
consistentvith theobtainedneasuremeny € [0, t]
(here #7]0,t] is the spaceof all obtairable measue-
mentson [0,t]). It is often referedto asthe “cost to
come”.Formally,

t

w00 = sup {p.(£(0)+ [[-r(wis)2)lds

we #[0,t] 5



. E(S) = f(f(S),U(S),W(S)),
9(§(s),w(s)) = y(s) Vs€ [0,t]
£ =x. ©)

Here p, : R" = RU {—w} is the nitial information
state.This integral equatim (5) can be refomulated
unde suitabledifferentiability condtionsasa PDE as
provedin (HeltonandJames199). In particuar,

on (x) = sup{—DOxpt”¥(x) - f(x,u,w)
ot WeRS
—r(w,h(x,w)) : g(x,w) =y}

= F(Dxptu7y7 U,y) (X)J (6)

wheref, g andh arethe systenfunctionsgiven in (1)
andr is thesupplyrate.

In orde to costa given measurmentfeedbak con-
troller K on afinite time horizon, define

Jo.(K;T)= sup  sup {Jp, (K; T, W, %) }
we#/ [0,T] X €R"

)

where

T

I (K3 T, w) = o) + [ [0 (W), 2(9)) s
0

(8)

With regard to interpretationof this cost,notethatthe
P (%) termontheRHSof (7),(8) representtheworst
casecostin steeringthe stateto X, (i.e. costto come)
whilst the integral term representsthe costto follow
on theinterval [0, T], with the stateinitialized at X,.
(Note thatthe costis alsoworst casewith respecto
thechoiceof statex,.)

A “reversearrons” chaacterizationof J is provided
via thefollowing definition(HeltonandJames1999:

Jo. (K Ty = sup {(p}) 1 u(s) =K(¥(9)),
ye#[0,T]

s€ [0, T], po given}. 9)
Here,(p) := maxgn {P(X)}.

Lemmad.1. (HeltonandJames19%) Forall T > 0,
Jpo(K;T) = Jpo(K;T)

The remaining resultsin this sectionprovide bourds
on the costJ undervarious condtions. Interpretation
of thesebourds lead to a suitabledefinition of the
optimalcontrolproblem

Lemmad.2. Consider system (1) and assumethat
(A1) holds. Then,thefollowing propertieshold:

(1) Given ary cortroller K, the finite horizon cost
Jp, (K;T) is nordecreasingn T.

(2) Givenacontrdler K initialized with information
statep, andary y € #[0,7] suchthat u(s) =
K(y)(s) is definedfor all s€ [0, 7], then

Jp. (K;T) > (pP) (10

forallye #[0,T] andall T € [0, 7], wherepyY =
Po-

(3) Theclosedoopsystem(G, K) is almost-dissipatie
with offsetA > Qiff forall T > 0,

J (KT) < AT (11)

-B
for somelocally bounded fundion 8 : R" —
Rso | o

(4) Suppee that (G,K) is almost-dissipatie with
offset A. Then thereexists a fundion B, such
that

o, (K;T) < (po+Bc) +AT. (12

EssentiallyLemmad4.2 providesalist of growth con-
ditions for the finite horizan cost (7). Indeed all as-
sertionsof the Lemmapoint towards gronth in the
costwhichmaybe (atmost)linearin thetime horizan
T. Hence,ary usefu definitionof time horizan inde-
pendnt costassociatedvith a given contrdler must
accoun for this growth with respectto T. With this
in mind, theworstcasetime horizan independentost
for cortroller K andoffsetA is definedto be

J L (K) = sup{Jp, (K;T)—AT}. (13
Pes T>0
Equivalently usingLemmad4.1,

I 4 (K)=sup sup
o T>0ye#[0,T]

L u(s) = K(y)(s),
se[0,T], p. given}. (14)

{{py") —AT

This definition is worst caseas it assumeghat the
bound(14) providedby Lemmad4.2is tight. Usingthis
definitionof costfunction, it is now possibleto define
theoptimalcontiol problemof interest:

Definition4.3. (Optimal Almost-DissipativeControl
Problem) Find the optimal measurerant feedbak
contrdler K* which minimizes the cost functional
Jp.a (K) given by (13). Thatis, find K* suchthat

32K = ini {3, (K0} =W (p), (19

where W, denots the optimal cost for achieving
closedioop almost-dissipatiomvith offsetA.

In orderto find thecontoller K*, thenaturalnext step
is to turnto dynanic progammirg.



5. DYNAMIC PROGRAMMING

The aim is to find a dynanic progammirg equa-
tion for W, . Thefollowing definitions andresultsare
mostly technical,leading to the dynamic progam-
mingresultof Theaem5.3.

ControllerK 5 is d-optimalgiven p. if

W, (Po) +8 > 3 5 (Ky): (16

Bounds on the optimal costW, follow from Lemma
4.2,thedefinition(15) of the optimal costW, , andthe
definitionof d-optimdity.

Lemmab.1. Theoptimal costW, givenby (15) satis-
fiesthefollowing properties:

(1) Forary informationstatep.,,

W, (Pe) > (Po)- (17)
(2) Givenary contrdler K,

300 > W () —At (19

for ary y € #[0,t] andary t > 0, whereu(s) =
K(y)(s). s€ [01].

(3) LetK 5 bead-optimd controller(16)for W, (p.).
Then,forary y € #[0,t] andary t > 0,

W, (Po) +At+3 > W, (ptY) (19
whereu(s) = K;(y)(s), s€ [0,t].

Thisdemorstrateghatevenfor d-optimal contrdlers,

W, (p"Y) “almostdecreases(i.e. mayincreaewithin

thebowundimposedby the At term)alongtrajectories.
This represets a departue from the H® resultsof
(HeltonandJames1999.

Using Lemma 5.1, the easierof the two dynamic
progammirg inequalitiescannow beproved.

Lemmab.2. Forallr > 0,W, satisfiegheinequality

W, (p) >infsup sup {[W, (") = Ar]x; o1
T>0yeZ[0,rAT]

H(PP) = ATIXo7 2 U(S) = K(Y)(9),

s€ [0,r AT], po given} (20
. [ 1 bistrue
wherer AT :=min(r,T) andy, = { 0 bisfalse

Using Lemma5.2 and by proving the oppdsite in-

equality we cannow statea dynamic progammirg

resultfor W, . Notethatin thedissipatve (A = 0) case,
the prod of this resultwould be identicalto thatin

(Helton and James,1999 Jamesand Baras, 199%).

The significant differencein the almost-dissipatie
(A > 0) caseis thata stoppingtime mustbe included

in the dynamic progammingequatia. The proof of

thisresultis presentedh Appendx A.

Theoemb.3. Forall r > 0, W, satisfiesthe dynamic
progammirg equdion

W, (po) =infsup sup  {[W, (p{"Y) = Ar]x, ot

T>0ye#[0,rAT]
HPPY = AT X7 1 U(s) = K(Y)(9),
se[0,r AT], p. given} (2)

The existing dissipatve (A = 0) result (Helton and
James,199; Jamesand Baras, 1999 follows as a
cordlary from the dynamc programmirg equatio
(21).

Corollary 5.4. Suppmsethat the supplyrate assump-
tion (A1) holds.Then in thedissipatve case(A = 0),
the optimal costW,, := W, _, satisfiesthe dynamic
progammirg equdion

Wo(po) =inf sup {We(pf™) :u(s) = K(y)(s),
YEZ[O,r]

s€e [0,r], p given} (22

forallr > 0.

6. A VARIATIONAL INEQUALITY

By definitionof theinformationstate(5), thedynamic
progammirg equation(21) is an integral equation
Theaim now is to derive anincrenental form of the
dynamic programmirg equation(21).

Recallthat W, (-) is a functional which mapsinfor-
mationsstates(i.e. functions)to real nunbers.Con-
sequently to meanindully formuate a differential
equatio involving W, (p), we require that W, be
Frechetdifferentiablewith respectto p, as per the
dissipatve case(Helton and James;1999 Jamesand
Baras,199%). Then applying thechainrule,

t=0.

DpW)‘(p)[ o
u7y —_—
{WA(pt ) W,\(po)}

=lim

tl0 t

wherel, denoteghe Frechetifferentiationoperaor.
Noteherethatthe LHS dendestpe directioral deriva-

tive of W, in the direction S‘t K The notatian

OpW, (p)[-] doesnotimply multiplication

We now statethe increrrental form of the dynamic
progammirg equation(21). Unlike the dissipatve
(A = 0) case,the differential equationobtainedis a
VI ratherthana PDE.

Theoem6.1. Suppaethattheoptimalalmost-dissipatie
cost function W, (p,) is Frechetdifferentiable with
respectto the information state p.. Then W, is a
solutionof the VI



0= max((po) —W, (Po), (23
—A + uienéfmyselég{mpw)\ (po) [F(Dxpm U,y)]}> y

whereF is the functional definedin the information
statePDE (6).

7. CERTAINTY EQUIVALENCE

In the standarddissipatve (A = 0) case,a comma

techniaie for simplifying the optimal contrd prob

lem is via certainty equivdence (Basarand Bern-
hard,19%; HeltonandJames1999 JamesndBaras,
1998§. In particular assuminghatthecertaintyequi-

alenceproperty holds(asdefinedbelow), themeasue-
mentfeedack problem canbe separatednto a state
feedtack prablem anda stateestimationprodem. In

this section the correspondig separatia is shavn to

occur in the almost-dssipatve caseuncer certainty
equialence.

With regad to notatian, let K4 dende astatefeedbak

contrdler which rencers the state feedbak closed
loop system(G,KZ) almost-dssipatie with suppy

rater andoffsetA. Additionally, let V4 dende a cor-

respomling storagefunction for the system(G,K2).

The certaintyequivalence property is thenexpressed
asfollows:

Certainty Equivalence (CE): Givena statefeedlack
storage functionV4 and the information state Py,
there existsa unique maximum with respecto x € R"
of the function p¥(x) + V4 (x) for all measuements
y € #[0,t] andall t > 0, where u = K4 (x). Thatis,
themaximizerx, is unique, whee

%, (p) = agmex{ pY0) + V2 (9} (24

XxeRN

Next, define the super available storage V, given
supplyrater andoffsetA for the correspading state
feedtackalmost-dissipatie contrd prodem:

V)\(XO) =

T
infsup sup {/[—r(w(s),z(s))—/\]ds
K§ T>0wer/(0,T] L}

1 2(s) = h(x(9), K& (X(9))),5 € [0, T],X(0) = xo}-
(29
Then, apgying resultsin (Soraia, 1996, V, is the

unigLe viscositysolutionof the VI
0= max(—V/\ (%),

—A+ inf sup{0xV, (%) - f(Xo,U,w)

UER™M RS

rw h(xo,u))}) .(26)

Usingthe superavailablestorageV, , definethe func-
tional

W, (po) := (po +V,). (27)

As was shavn in (Jamesand Baras,19%), given a
fundion h: R" — R, fundionals of the form of (27)
are Frechetdifferentiable with respectto p in the
direction h. Furthernore, this directioral derivative
is given by the evaludgion map provided thatthe CE
property holds.Thatis,

OpW, (po)[h] = h(X, (po)), (29

where x, (p.) is the maximizer (24) for the infor-
mationstate p,. Using this fact yields the following
simpleresult.

Lemmar.1. Suppee that the CE assumptia holds
andthatp, andV, aredifferentiableatx, (p.). Then,

uienF}‘mysetég{DpVA\//\ (Po) [F (Oxpo, u,Y)1 }
=H ()T)\ (Po), DXV)\ ()T)\ (P.))) (29

whereF is the operato definedby (6) andH is the
Hamiltonian

H(x,p) =
inf sup{p- f(x,uw)—r(wh(x,u)))}. (30

UERM yeRs

Finally, this mears that the functioral (27) is an ex-
plicit solution of the VI (23) provided that the CE
property holds.

Theoem?7.2. Suppaethatthe CE propertyholdsand
that p, andV, aredifferertiableatx, (p,). Then,the
fundional VA\/)\ given by (27) is a solution of the VI
(23).
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Apperdix A. PROOFOF THEOREMS.3

Proof: Lemmab.2providesinequality in (21) in one
direction To prove the oppdsite direction dende the
RHS of (21) by R, (p,). Theaim is thento shav that
R (Po) > W, (po). Fix r > 0. ChooseK; ,, to bea o-
optimal contrdler for R;(p,). Note thatthe sup over
#[0,r AT] isidenticalto thatover #[0, T]. Then,for
allye #[0,T], T >0,

Rr(p.) +9
> W, () = Ar] Xt + (PP = ATIXrsT
1u(s) =K(y)(s), s€[0,T], p. given.  (A.1)

ChooseKy p, d-optimalin W, (piY). If T >,

W, () +6
> 32 ()

>sup sup {(p3) —A(T -r)
T>r9e#r,T]

L0(S) = K, (9)(9), s€ [r, T], pi¥ = pp,
u S),: Ke,p, (Y)(9),s € [0,r], po given}

c
—~
«u

I

Krp, (¥)(8), S€[O,r], p given, (A.2)

for all y € #[r,T]. Definethe augmeted output and
contrdler as

[ y(s) s€]0,r],
ﬂ@—{wssehﬁ,

— Kr, o(y)(S),SE [Oa r]a
“MXQ‘{&&m@semﬂ-

Combinirg (A.1), (A.2) and(A.3),

(A.3)

R (po)+0
> [(PP"1) = A(T —1) = Ar =&)X, 1
+UPE) = AT]Xe > 7

: Ul(S) = Kl(yl) (S)a SIS [Oaf]a po given

> [(p#—l’yl) - )‘T]Xr<T + [< p#l’yq - )‘T]XrZT -9

: Ul(S) = Kl(yl) (8)7 SIS [OaT]a po given
=(p?1) —AT =9

tUy(s) =Ky (y1)(s), s€ [0, T], po given

for all y; € [0, T], T > 0. Therebre, taking the
supremumovery, € [0, T},

Rr(p.) +25
> sup {(pp"1)-AT
V1€Z[0,T]

1y () = Ky(y;)(9), s€ [0, T], po given}
=Jp, (K3 T) — AT,
forany T > 0. Takingthe suprenmmover T > 0 and

notingthatK, is subopimal yieldsthatR;(p.) +25 >
W, (p,). Sendirg & | 0 comgetesthe prod. ™



