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Abstract: In this paper, an optimal measurement feedback control problem that yields an
almost-dissipative closed loop system is considered. Using information state ideas and
the definition of the optimal cost presented, a dynamic programming equation is derived.
Incremental analysis yields a corresponding variational inequality (VI) which naturally
generalizes the information state based partial differential equation (PDE) associated with
measurement feedback nonlinear H-infinity control. In theory, this variational inequality can
be used to synthesize an optimal measurement feedback controller which guarantees that the
closed loop system almost satisfies a given dissipation property. This “almost-dissipation”
property admits a weaker form of stability for the closed loop system, allowing presistence
of excitation in the absence of disturbance inputs. Finally, certainty equivalence control is
investigated as a special case of the results presented.

Keywords: Dissipative control, optimal control, measurement feedback, information state,
dynamic programming, variational inequality, certainty equivalence.

1. INTRODUCTION

Dissipative systems theory (Willems, 1972; Hill and
Moylan, 1976; Hill and Moylan, 1980) has wide rang-
ing implications and applications in control theory.
One of the most popular of these in recent times has
been nonlinearH ∞ control.

As a design method for nonlinear robust control, non-
linearH∞ control was first explored geometrically in
(van der Schaft, 1992; Isidori and Astolfi, 1992). The
more general information state approach of (Basar and
Bernhard, 1995; Helton and James, 1999) has subse-
quently produced significant advances in the under-
standing of the measurement feedback control prob-
lem.

Information state control provides the theoretical tools
for designing measurement feedbackH ∞ controllers
and, more generally, dissipative controllers for non-
linear systems. Although decoupling (or separation)
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of a measurement feedback dissipative control prob-
lem into traditional state estimation and state feedback
problems is not in general possible, the information
state controller overcomes this problem via the feed-
back of theinformation stateinstead (the information
state is a function which evolves in time according to a
partial differential equation (PDE) dependent on past
plant measurements and applied controls). That is, the
traditional measurement feedback problem is replaced
by an equivalent information state feedback problem.

Information state control thus consists of a dynamic
controller which maps past plant measurements and
controls to present controls via the information state
and an information state control policy. When con-
nected in feedback with the nonlinear plant, the result-
ing information state controller yields a closed loop
system with a prescribed dissipation property. In the
H∞ case, this means anL2-gain bound from distur-
bances to outputs for the closed loop system. (This is
equivalent to the closed loop being dissipative with an
L2 supply rate.)
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In this paper, thefirst stepin desiginganalogouscon-
trollers to yield “almost-dissipative” closedloop sys-
temsis considered.Theimportant generalizationhere
is thata prescribeddissipationproperty for theclosed
loop systemis almostmet,but not quite.This means
that theattendant (typically asymptotic) stability of a
dissipative closedloop systemis weakened,allowing
practical stability. Hence,trajectoriesof thecontrolled
plantmayconvergeto someneigbourhood of theori-
gin.

Almost-dissipation is definedin this paperby includ-
ing an offset in the supply rate usedto define the
conventional dissipationproperty, in the sameway
as in otherpracticalproperties suchas input-to-state
practicalstability (Z.P. Jiang,1994) and power gain
(practical L2-gain) analysis(DowerandJames,1998).
Using this notion of almost-dissipation,an optimiza-
tion problem is definedand the corresponding dy-
namicprogramming equation derived. Incrementally,
this equation is shown to correspondto a variational
inequality (VI) which naturallygeneralizesthe infor-
mationstatebasedPDEof (HeltonandJames,1999).
In thespecialcaseof certaintyequivalence,anexplicit
solutionof this VI is provided.

All omitted proofs will appear in a later article
(Dower, 2002).

2. PRELIMINARIES

We considernonlinear plantsG of theform

ẋ
�
t ��� f

�
x
�
t ��� u � t �	� w � t �
�	�

y
�
t ��� g

�
x
�
t �	� w � t �
�	�

z
�
t ��� h

�
x
�
t �	� u � t ����� (1)

where f , g andh arezeroat zero.Herex
�
t ��� Rn is

thestate,w
�
t �� Rs is thedisturbance,u

�
t �� Rm is the

control, y
�
t ��� Rp is themeasurement andz

�
t ��� Rr is

theperformancemeasure.

We assumethat g is invertible in the sensethat there
existsa function g# : Rp � Rn � Rs � Rs suchthatfor
any triple

�
y� x � w ��� �

y
�
t ��� x � t ��� w � t ����� Rp � Rn � Rs

with y
��� � , x

��� � and w
��� � satisfyingsystem(1), there

existsav � Rs suchthat

w � g# � y� x � v�	� (2)

wherefor any x � Rn,

y � g
�
x � g# � y� x � v�����

w � g# � g � x � w�	� x � w ���
Remark2.1. Invertibility of function g is utilized in
the H∞ case(Helton and James,1999) so that the
optimal control problem of interestcanbe expressed
as an optimization over controls and measurements

ratherthancontrols anddisturbances.See(Heltonand
James,1999) for detailsrelevant to “reversingarrows”
in thatcase.

3. ALMOST-DISSIPATIVE SYSTEMS

System(1) is almost-dissipative (or practicallydissi-
pative) with respectto supply rate r : Rs � Rr � R
if thereexistsa locally boundednonnegative function
V : Rn � R anda realnonnegative offsetλ suchthat

V
�
x����� T�

0

r
�
w
�
s�	� z � s��� ds � V

�
x
�
T ����� λT (3)

for all initial statesx��� Rn, all disturbances w ��! 
0 � T " andall time horizonsT � 0. Here,

�# 
0 � T "

is the spaceof inputsfor which the integral in (3) is
finite. We assumethefollowing:

(A1) Thesupplyratesatisfiestheinequality r
�
0 � z�%$

0 for all z � Rr .

Note that in the dissipative (λ � 0) case,this corre-
sponds to energy liberation in the absenceof distur-
bances.

Thefollowing resultlinks almost-dissipationwith the
corresponding input/outputproperty.

Theorem3.1. A systemis almost-dissipativewith off-
set λ if f thereexists a locally boundednonnegative
function β : Rn � R suchthat

T�
0

 � r
�
w
�
s�	� z � s���&" ds $ β

�
x�	��� λT (4)

for all x� � Rn, all w � �! 
0 � T " andall T � 0.

4. THE INFORMATION STATE AND THE
OPTIMAL CONTROL PROBLEM

Using the notion of information state (Helton and
James,1999), a cost function is definedin termsof
the supplyrate,offset andcontroller. Resultslinking
this cost function to the almost-dissipative systems
propertyarepresented.

The information state pu � y
t

�
x� (Helton and James,

1999) captures the worst possibleintegratedcost for
all trajectoriesof system(1) given the final statex,
consistentwith theobtainedmeasurementsy �('  

0 � t "
(here, '  

0 � t " is the spaceof all obtainablemeasure-
mentson

 
0 � t " ). It is often referred to asthe “cost to

come”.Formally,

pu � y
t

�
x��� sup

w )+*�, 0 � t -/. p� � ξ � 0����� t�
0

 � r
�
w
�
s�	� z � s���0" ds



: ξ̇
�
s�1� f

�
ξ
�
s�	� u � s�	� w � s���	�

g
�
ξ
�
s�	� w � s�
��� y

�
s��2 s �  0 � t "

ξ
�
t �� x 3�� (5)

Here p� : Rn � R 4657� ∞ 8 is the initial information
state.This integral equation (5) canbe reformulated
under suitabledifferentiability conditionsasaPDEas
provedin (HeltonandJames,1999). In particular,

∂ pu � y
t

∂ t

�
x�9� sup

w ) Rs : � ∇xpu � y
t

�
x� � f � x � u � w�� r

�
w� h � x � w��� : g

�
x � w�1� y ;� : F

�
∇xpu � y

t � u � y� � x��� (6)

where f , g andh arethesystemfunctionsgiven in (1)
andr is thesupplyrate.

In order to costa given measurement feedback con-
troller K ona finite time horizon,define

Jp< � K;T ��� sup
w )+*=, 0 � T - sup

x<&) Rn : Jp< � K;T � w� x��� ;
(7)

where

Jp< � K;T � w� x�>�?� p� � x����� T�
0

 � r
�
w
�
s�	� z � s���0" ds�

(8)

With regard to interpretationof this cost,notethatthe
p� � x��� termontheRHSof (7),(8) representstheworst
casecostin steeringthestateto x � (i.e. costto come),
whilst the integral term representsthe cost to follow
on the interval

 
0 � T " , with the stateinitialized at x � .

(Note that the cost is alsoworst casewith respectto
thechoiceof statex � .)
A “reversearrows” characterizationof J is provided
via thefollowing definition(HeltonandJames,1999):

J̃p< � K;T ��� sup
y )+@A, 0 � T - :�B pu � y

T C : u
�
s�1� K

�
y
�
s���	�

s �  0 � T "D� p� given;�� (9)

Here, B pC : � maxx ) Rn 5 p � x�	8 .
Lemma4.1. (HeltonandJames,1999) For all T � 0,
J̃p< � K;T �1� Jp< � K;T � .
The remaining resultsin this sectionprovide bounds
on thecostJ undervarious conditions. Interpretation
of thesebounds lead to a suitabledefinition of the
optimalcontrolproblem.

Lemma4.2. Consider system (1) and assumethat
(A1) holds.Then,thefollowing propertieshold:

(1) Given any controller K, the finite horizon cost
Jp< � K;T � is nondecreasingin T.

(2) Givenacontroller K initializedwith information
state p� and any y �E'  

0 � τ " such that u
�
s�F�

K
�
y� � s� is definedfor all s �  0 � τ " , then

Jp< � K;T �G� B pu � y
T C (10)

for all y �H'  
0 � T " andall T �  0 � τ " , wherepu � y� �

p� .
(3) Theclosedloopsystem

�
G � K � isalmost-dissipative

with offsetλ � 0 iff for all T � 0,

JI β
�
K;T �J$ λT (11)

for some locally bounded function β : Rn �
R K 0.

(4) Suppose that
�
G � K � is almost-dissipative with

offset λ . Then, thereexists a function βK such
that

Jp< � K;T �J$ B p� � βK C � λT � (12)

Essentially, Lemma4.2providesa list of growth con-
ditions for the finite horizon cost (7). Indeed, all as-
sertionsof the Lemmapoint towardsgrowth in the
costwhichmaybe(atmost)linearin thetimehorizon
T. Hence,any useful definitionof time horizon inde-
pendent costassociatedwith a given controller must
account for this growth with respectto T. With this
in mind,theworstcasetimehorizon independentcost
for controller K andoffsetλ is definedto be

Jp< � λ � K �6� sup
T K 0 : Jp< � K;T ��� λT ;L� (13)

Equivalently, usingLemma4.1,

Jp< � λ � K ��� sup
T K 0

sup
y )+@M, 0 � T - : B pu � y

T C � λT

: u
�
s�� K

�
y� � s���

s �  0 � T "D� p� given ; � (14)

This definition is worst caseas it assumesthat the
bound(14)providedby Lemma4.2is tight.Usingthis
definitionof costfunction, it is now possibleto define
theoptimalcontrol problemof interest:

Definition4.3. (Optimal Almost-DissipativeControl
Problem) Find the optimal measurement feedback
controller K

�
which minimizes the cost functional

Jp< � λ � K � given by (13). Thatis, find K
�

suchthat

Jp< � λ � K � �6� inf
K N Jp< � λ � K ��OP� : Wλ

�
p� �	� (15)

where Wλ denotes the optimal cost for achieving
closedloopalmost-dissipationwith offsetλ .

In orderto find thecontroller K
�
, thenaturalnext step

is to turn to dynamic programming.



5. DYNAMIC PROGRAMMING

The aim is to find a dynamic programming equa-
tion for Wλ . Thefollowing definitionsandresultsare
mostly technical, leading to the dynamic program-
mingresultof Theorem5.3.

ControllerKδ is δ -optimalgiven p � if

Wλ
�
p����� δ � Jp< � λ � Kδ ��� (16)

Bounds on the optimal costWλ follow from Lemma
4.2,thedefinition(15)of theoptimal costWλ , andthe
definitionof δ -optimality.

Lemma5.1. Theoptimal costWλ givenby (15) satis-
fiesthefollowing properties:

(1) For any informationstatep � ,
Wλ

�
p�	�J� B p� C � (17)

(2) Givenany controller K,

Jp< � λ � K �Q� Wλ
�
pu � y

t ��� λt (18)

for any y �6'  
0 � t " andany t � 0, whereu

�
s�%�

K
�
y� � s� , s �  0 � t " .

(3) LetKδ beaδ -optimal controller(16)forWλ
�
p� � .

Then,for any y �R'  
0 � t " andany t � 0,

Wλ
�
p� ��� λ t � δ � Wλ

�
pu � y

t � (19)

whereu
�
s��� Kδ

�
y� � s� , s �  0 � t " .

Thisdemonstratesthatevenfor δ -optimal controllers,
Wλ

�
pu � y

t � “almostdecreases”(i.e.mayincreasewithin
thebound imposedby theλ t term)alongtrajectories.
This represents a departure from the H ∞ resultsof
(HeltonandJames,1999).

Using Lemma 5.1, the easierof the two dynamic
programming inequalitiescannow beproved.

Lemma5.2. For all r � 0,Wλ satisfiestheinequality

Wλ
�
p����� inf

K
sup
T K 0

sup
y )+@M, 0 � r S T - :  Wλ

�
pu � y

r ��� λr " χr T T�  B pu � y
T C � λT " χr K T : u

�
s�� K

�
y� � s���

s �  0 � r U T "0� p� given; (20)

wherer U T : � min
�
r � T � andχb � . 1 b is true

0 b is false
.

Using Lemma 5.2 and by proving the opposite in-
equality, we can now statea dynamic programming
resultfor Wλ . Notethatin thedissipative(λ � 0) case,
the proof of this resultwould be identical to that in
(Helton and James,1999; Jamesand Baras,1996).
The significant differencein the almost-dissipative
(λ V 0) caseis thata stoppingtime mustbeincluded
in the dynamic programmingequation. The proof of
this resultis presentedin Appendix A.

Theorem5.3. For all r � 0, Wλ satisfiesthedynamic
programming equation

Wλ
�
p� ��� inf

K
sup
T K 0

sup
y )W@X, 0 � r S T - :  Wλ

�
pu � y

r ��� λ r " χr T T�  B pu � y
T C � λT " χr K T : u

�
s�1� K

�
y� � s�	�

s �  0 � r U T "D� p� given; (21)

The existing dissipative (λ � 0) result (Helton and
James,1999; Jamesand Baras,1996) follows as a
corollary from the dynamic programming equation
(21).

Corollary 5.4. Supposethat the supplyrateassump-
tion (A1) holds.Then, in thedissipative case(λ � 0),
the optimal cost W0 : � Wλ Y 0 satisfiesthe dynamic
programming equation

W0

�
p�	��� inf

K
sup

y )+@M, 0 � r - : W0

�
pu � y

r � : u
�
s�1� K

�
y� � s���

s �  0 � r "0� p� given; (22)

for all r � 0.

6. A VARIATIONAL INEQUALIT Y

By definitionof theinformationstate(5), thedynamic
programming equation(21) is an integral equation.
The aim now is to derive an incremental form of the
dynamicprogramming equation(21).

Recall that Wλ
��� � is a functional which mapsinfor-

mationsstates(i.e. functions) to real numbers.Con-
sequently, to meaningfully formulate a differential
equation involving Wλ

�
p� , we require that Wλ be

Frechetdifferentiablewith respectto p, as per the
dissipative case(HeltonandJames,1999; Jamesand
Baras,1996). Then, applying thechainrule,

∇pWλ
�
p�FZ ∂ pu � y

t

∂ t [[[[ t Y 0 \� lim
t ] 0 . Wλ

�
pu � y

t ��� Wλ
�
p0 �

t
3

where∇p denotestheFrechetdifferentiationoperator.
NoteherethattheLHS denotesthedirectional deriva-
tive of Wλ in the direction

∂ pu ^ y
t

∂ t [[[ t Y 0
. The notation

∇pWλ
�
p�  � " doesnot imply multiplication.

We now statethe incremental form of the dynamic
programming equation(21). Unlike the dissipative
(λ � 0) case,the differential equationobtainedis a
VI ratherthana PDE.

Theorem6.1. Supposethattheoptimalalmost-dissipative
cost function Wλ

�
p��� is Frechetdifferentiable with

respectto the information state p � . Then, Wλ is a
solutionof theVI



0 � max _ B p� C � Wλ
�
p�	�	�� λ � inf

u) Rm
sup
y ) Rp : ∇pWλ

�
p���  F � ∇xp�+� u � y�&" ;a` �(23)

whereF is the functional definedin the information
statePDE(6).

7. CERTAINTY EQUIVALENCE

In the standarddissipative (λ � 0) case,a common
technique for simplifying the optimal control prob-
lem is via certainty equivalence (Basar and Bern-
hard,1995; HeltonandJames,1999; JamesandBaras,
1996). In particular, assumingthatthecertaintyequiv-
alencepropertyholds(asdefinedbelow), themeasure-
mentfeedbackproblem canbe separatedinto a state
feedback problem anda stateestimationproblem. In
this section,thecorresponding separation is shown to
occur in the almost-dissipative caseunder certainty
equivalence.

With regard to notation, let Kλ
st denoteastatefeedback

controller which renders the state feedback closed
loop system

�
G � Kλ

st � almost-dissipative with supply
rater andoffsetλ . Additionally, let V λ

st denote a cor-
responding storagefunction for the system

�
G � K λ

st � .
The certaintyequivalenceproperty is thenexpressed
asfollows:

Certainty Equivalence (CE): Givena statefeedback
storage functionVλ

st and the information state pu � y
t ,

there existsa unique maximum with respectto x � Rn

of the function pu � y
t

�
x�?� Vλ

st
�
x� for all measurements

y �Q'  
0 � t " and all t � 0, where u � Kλ

st
�
x� . That is,

themaximizerx̄λ is unique, where

x̄λ
�
pu � y

t � : � argmax
x ) Rn N pu � y

t

�
x�b� Vλ

st
�
x� O � (24)

Next, define the super available storage Vλ given
supplyrater andoffsetλ for thecorrespondingstate
feedbackalmost-dissipativecontrol problem:

Vλ
�
x��� : �

inf
Kλ

st

sup
T K 0

sup
w )+*=, 0 � T -c. T�

0

 � r
�
w
�
s��� z � s�
��� λ " ds

: z
�
s�1� h

�
x
�
s��� Kλ

st
�
x
�
s�d���	� s �  0 � T "0� x � 0�1� x� 3F�

(25)

Then,applying resultsin (Soravia, 1996), Vλ is the
unique viscositysolutionof theVI

0 � max _ � Vλ
�
x���	�� λ � inf

u ) Rm
sup
w ) Rs : ∇xVλ

�
x� � � f � x� � u � w�

� r
�
w� h � x�e� u��� ; `f� (26)

UsingthesuperavailablestorageVλ , definethefunc-
tional

Ŵλ
�
p��� : � B p�g� Vλ C � (27)

As was shown in (Jamesand Baras,1996), given a
function h : Rn � R, functionalsof the form of (27)
are Frechetdifferentiable with respectto p in the
direction h. Furthermore, this directional derivative
is given by the evaluation mapprovided that the CE
propertyholds.Thatis,

∇pŴλ
�
p���  h"a� h

�
x̄λ
�
p���
�	� (28)

where x̄λ
�
p��� is the maximizer (24) for the infor-

mationstatep� . Using this fact yields the following
simpleresult.

Lemma7.1. Suppose that the CE assumption holds
andthat p� andVλ aredifferentiableat x̄λ

�
p� � . Then,

inf
u ) Rm

sup
y ) Rp : ∇pŴλ

�
p� �  F � ∇xp� � u � y�&"�;� H
�
x̄λ
�
p� �	� ∇xVλ

�
x̄λ
�
p� �
��� (29)

whereF is the operator definedby (6) andH is the
Hamiltonian

H
�
x � ρ ��
inf

u ) Rm
sup

w ) Rs
5 ρ � f � x � u � w�h� r

�
w� h � x � u���
�d81� (30)

Finally, this means that the functional (27) is an ex-
plicit solution of the VI (23) provided that the CE
propertyholds.

Theorem7.2. SupposethattheCEpropertyholdsand
that p� andVλ aredifferentiableat x̄λ

�
p�	� . Then,the

functional Ŵλ given by (27) is a solution of the VI
(23).
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Appendix A. PROOFOF THEOREM5.3

Proof: Lemma5.2providesinequality in (21) in one
direction. To prove theopposite direction, denote the
RHSof (21) by Rr

�
p� � . Theaim is thento show that

Rr
�
p���L� Wλ

�
p��� . Fix r � 0. ChooseKr � p< to bea δ -

optimal controller for Rr
�
p�	� . Note that the supover'  

0 � r U T " is identicalto thatover '  
0 � T " . Then,for

all y �R'  
0 � T " , T � 0,

Rr
�
p� ��� δ�  
Wλ

�
pu � y

r ��� λr " χr T T �  B pu� y
T C � λT " χr K T

: u
�
s�1� K

�
y� � s�	� s �  0 � T "D� p� given � (A.1)

ChooseKr � pr δ -optimal in Wλ
�
pu � y

r � . If T V r,

Wλ
�
pu � y

r ��� δ� J �
pu ^ y

r � � λ � Kr � pr �� sup
T K r

sup
ŷ )+@X, r � T - : B pû � ŷ

T C � λ
�
T � r �

: û
�
s�1� Kr � pr

�
ŷ� � s�	� s �  r � T "0� pû � ŷ

r � pu � y
r �

u
�
s�1� Kr � p< � y� � s��� s �  0 � r "D� p� given ;� B pû� ŷ

T C � λ
�
T � r �

: û
�
s�1� Kr � pr

�
ŷ� � s�	� s �  r � T "0� pû � ŷ

r � pu � y
r �

u
�
s�1� Kr � p< � y� � s��� s �  0 � r "D� p� given � (A.2)

for all ŷ �Q'  
r � T " . Definethe augmented output and

controller as

y1

�
s��� . y

�
s� s �  0 � r "0�

ŷ
�
s� s �  r � T "D�

K1

�
y1 � � s��� . Kr � p< � y� � s��� s �  0 � r "0�

Kr � pr

�
ŷ� � s�	� s �  r � T "0� (A.3)

Combining (A.1), (A.2) and(A.3),

Rr
�
p����� δ�  B pu1

� y1
T C � λ

�
T � r ��� λr � δ " χr T T�  B pu1

� y1
T C � λT " χr K T

: u1

�
s�1� K1

�
y1 � � s�	� s �  0 � T̂ "D� p� given��  B pu1

� y1
T C � λT " χr T T �  B pu1

� y1
T C � λT " χr K T � δ

: u1

�
s�1� K1

�
y1 � � s�	� s �  0 � T "D� p� given� B pu1

� y1
T C � λT � δ

: u1

�
s�1� K1

�
y1 � � s�	� s �  0 � T "D� p� given�

for all y1 �i'  
0 � T " , T � 0. Therefore, taking the

supremumovery1 �j'  
0 � T " ,

Rr
�
p� ��� 2δ� sup

y1 )+@X, 0 � T - : B pu1
� y1

T C � λT

: u1

�
s�1� K1

�
y1 � � s�	� s �  0 � T "D� p� given;� Jp< � K1;T �h� λT �

for any T � 0. Takingthesupremum over T � 0 and
notingthatK1 is suboptimal yieldsthatRr

�
p���7� 2δ �

Wλ
�
p��� . Sending δ k 0 completestheproof.


