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Abstract: This paper deals with an estimation problem with two different kinds of
sensors. The first sensor is characterized by a relatively fast sampling rate and a small
time delay. The second sensor is characterized by a slow sampling rate and a large time
delay. A typical example of the latter is a ”soft sensor.” The paper provides a solution
to the estimation problem in a Kalman Filtering setup, and discusses implementation
details using square-root UD factorization.
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1. INTRODUCTION
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Fig. 1. Filtering setup with non-delayed/delayed
measurements

This note considers the filtering problem illus-
trated in Figure 1. The objective is to estimate
the state x[k] of a discrete-time, linear but pos-
sibly time-varying system P , driven by a white
noise Gaussian signal w[k]. Two measurements are
available from the system:

• The measurement z1[k], which is available
without delay and takes values for each k,
and

• The measurement z2[kn − L], which has a
delay of L samples and the sequence of in-
deces {kn} is such that kn − kn−1 ≥ L.
An important assumption is that the validity

time kn−L is known at least at time k̂n−L,
although the measurement becomes available
only at kn. The filter algorithm can hence
take any required provisions, like storing or
processing information at the fixed time k̂n.

This information scheme may appear whenever
the measurement signals z1 come from actual
”physical” measurements while the signals z2 are
derived using more or less elaborated computa-
tional algorithms. As a typical example, the latter
case may correspond to signals z2 obtained from
a ”soft sensor.” Specifically, this soft sensor may
be a vision system, in which images are processed
by an image processing algorithm to generate a
position or motion update. The time delay L may
be due to the computations required for obtaining
the measurement. The fact that measurements
are obtained at most every other L samples re-
flects computational limitations or the absence of
information that could be processed by the soft
sensor. When z2 is not present, the problem above
reduces to a Kalman filtering problem (Anderson
and Moore, 1979; Mendel, 1995; Gelb, 1974).
When z1 is not present, the problem reduces to a
Kalman filtering problem with delayed measure-
ments, which is a simple extension of the standard
Kalman filter (Gelb, 1974). When both measure-
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ments are presents, then the problem becomes
more complicated and a careful tracking of the es-
timates and their covariances is required. The pur-
pose of this paper is to solve this problem and to
provide a computational robust algorithm, based
on Bierman’s UD factorization (Bierman, 1977)
for implementing the solution.

Assuming that P is a finite-dimensional, linear,
possibly time-variant system, we get the model:

x[k + 1] = Φ(k + 1, k)x[k] + w[k]

z1[k] = H1(k)x[k] + v1[k]

z2[kn] = H2(kn − L)x[kn − L] + v2[kn − L]

The noise signals w[·], v1[·], v2[·] verify the stan-
dard Kalman-filter assumptions (Mendel, 1995),
namely they are white Gaussian sequences with
covariance Q[k] and Ri[k], respectively. A corre-
sponding assumption holds with respect to the
initial state x[0] of the system. The filter F in
Fig. 1 processes the measurements to generate an
estimate x̂[k/k] of the state x[k], and we want
x̃[k/k]

.
= x[k]−x̂[k/k] to be optimal in the Kalman

filter sense. In principle, this can be done as fol-
lows:

(1) At time k, store x̂[k/k] and the error covari-
ance P [k/k].

(2) Generate the estimates x̂[k + l/k + 1], l =
1, 2, · · · , L by using a standard Kalman fil-
tering algorithm on the measurements z1[k+
l].

(3) At time k+L the measurement z2[k] becomes
available. Update the stored estimate x̂[k/k]
and the corresponding error covariance, using
the Kalman filter update formula.

(4) Reprocess all measurements z1[k + l] using
again the Kalman filtering formulas up to the
present instant k + L.

The approach discussed above is optimal but not
feasible in applications with limited computa-
tional or memory resources. Instead, one would
like to obtain a recursive algorithm for processing
the data, more amicable to real-time implemen-
tation. Alternatively, one could use lifting argu-
ments as in (Mirkin et al., 1999) to formulate the
problem as a standard Kalman filtering one in the
lifted domain. In this way, the standard formulas
can be used to ”solve” the problem; it remains to
be seen if this route can be used to generate a
recursive solution as the one considered next.

Processing measurements with delays like z2 is
relatively straightforward within the Kalman fil-
tering algorithm. The optimal solution consists on
generating an estimate x̂[k/k] at the time k + L
when the measurement becomes available, and
then propagate the solution in time using the
dynamics matrix Φ(k + L, k). On the other hand,

given an estimate x̂[k/k] and ”future” measure-
ments z1[k+l], then the estimate can be improved
by using an algorithm called smoothing. This al-
gorithm generates estimates of the form x̂[k/k+l],
and the estimates can be optimal in the Kalman
filtering sense (see (Mendel, 1995) and the ref-
erences therein). The solutions for delayed and
smooth estimates suggest the following approach
for the problem at hand:

(1) At time k, store x̂[k/k] and the error covari-
ance P [k/k].

(2) Generate the estimates x̂[k + l/k + l], l =
1, 2, · · · , L by using a standard Kalman fil-
tering algorithm on the measurements z1[k+
l].

(3) Generate the smooth estimates x̂[k/k + l]
with corresponding covariance P [k/k+l], l =
1, 2, · · · , L. This estimates are computed
recursively by using x̂[k + l/k + l− 1].

(4) At time k + L the measurement z2[k] be-
comes available. Update the smooth estimate
x̂[k/k+l] and the corresponding error covari-
ance, using the Kalman filter update formula.

(5) Propagate the estimate to current time using
the dynamics matrix Φ(k+L, k) and likewise
for the error covariance.

Notice that the overall algorithm implements a
filtering/smoothing/propagation strategy. The in-
tuitive idea is that all information from k + 1 to
k + L obtained from the z1’s have already been
extracted when computing the smooth estimate
x̂[k/k + L], and hence propagation gives the best
possible estimate. We will show by an example
that this intuition is not correct. Instead, we
propose a new filtering/smoothing/filtering algo-
rithm, that produces optimal estimates under the
constraints imposed by the processing. The basic
idea is to formulate the optimal estimation prob-
lem and then show how the quantities required in
the solution can be computed recursively.

Preliminaries and Notation

The symbol x̂[k/l] denotes an estimate of the state
at time k based on all measures z1 up to time
l. Recall from basic Kalman Filter theory that
x̂[k + 1/k] is the a priori estimate computed as:

x̂[k + 1/k] = Φ(k + 1, k)x̂[k/k],

while x̂[k + 1/k + 1] is the a posteriori estimate

x̂[k + 1/k + 1] = x̂[k + 1/k]+

K1(k + 1) (z1[k]−H1(k)x̂[k + 1/k]) .

Here K1(k + 1) denotes the optimal Kalman gain
(see, e.g., (Grewal and Andrews, 1993), ch. 4).



Smooth estimates will be of the form x̂[k/k + l],
and can be computed recursively using:

x̂[k/k + l] = x̂[k/k + l − 1]

+N(k/k + l)z̃1[k + l/k], l = 1, 2, · · ·

where

z̃1[k + l/k] = z1[k + l]

−H1(k + l)x̂[k + l/k + l− 1]

The matrix N(k/k + l) can be thought of as
the optimal smoothing gain. The formula for
the state, together with a recursive expression
for N(k/k + l) can be found in (Mendel, 1995).
Whenever the measurement z2[m] is also involved,
we will use the notation x̂[k/l, m]. The same
notation is used for the estimation error x̃[·].
The notation for covariance matrix becomes quite
involved. If x̃[k1/l1] and ỹ[k2/l2] are two stochastic
variables, then:

Pxy(k1, k2/l1, l2)
.
= Ex̃[k1/l1]ỹ[k2/l2]

T ,

where E denotes the expected value operator. If
x = y, k1 = k2 or l1 = l2, then a single index will
be used, e.g.:

Px̃(k1/l1, l2) = Ex̃[k1/l1]x̃[k1/l2]
T .

To further simplify notation, we will replace Px̃x̃

by P . Notation is further complicated by the
dependence on both z1 and z2.

2. AN INTUITIVE SOLUTION THAT DOES
NOT WORK

As explained in the introduction an intuitive so-
lution would proceed as follows for the case l = 1:

(1) Propagate x̂[k/k] to x̂[k + 1/k].
(2) Update x̂[k + 1/k] to x̂[k + 1/k + 1].
(3) Smooth x̂[k + 1/k + 1] to x̂[k/k + 1].
(4) Propagate x̂[k/k + 1] to ??

One is tempted to replace the question marks
on the end by x̂[k + 1/k + 1] but unfortunately
this is in general incorrect. It is possible to show
that this estimate is optimal only if Q[k]H1(k +
1)T = 0. The physical meaning of this equality is
that the states generating the measurement are
not affected by process noise and consequently
their estimate is not degraded from sample time
to sample time. Notice that for a multiple-stage
smoother and under the assumption that the
system is observable, the process noise should
affect eventually the outputs.

3. OPTIMAL COMBINATION OF OLD
MEASUREMENTS

The estimate of the state at time k + l is to
be estimated based on the measurement z2[k] by
using:

x̂[k + l/k + l, k] = x̂[k + l/k + l]

+K2(k/k + l) (z2[k]−H2(k)x̂[k/k + l])

= x̂[k + l/k + l] + K2(k/k + l)H2(k)x̃[k/k + l]

+K2(k/k + l)v2[k].

The estimation error is hence:

x̃[k + l/k + l, k] = x̃[k + l/k + l]

−K2(k/k + l) [H2(k)x̃[k/k + l]− v2[k]] .

Notice that the matrix K2(k/k + l) is still to be
defined. Using the notation introduced in Section
1, the covariance of the estimation error as a
function of K2(k/k + l) can be evaluated to be:

P K2 [k + l/ {k + l, k}] = P [k + l/k + l]+

K2(k/k + l)H2(k)P (k/k + l)H2(k)T K2(k/k + l)T

+K2(k/k + l)R2(k)K2(k/k + l)T

−P (k + l, k/k + l)H2(k)T K2(k/k + l)T

−K2(k/k + l)H2(k)P (k + l, k/k + l)

It is a well known fact (Mendel, 1995) that the
minimum of the trace of this matrix, and con-
sequently the optimal solution, can be found by
setting:

K2(k/k + l) = P [k + l, k/k + l]H2(k)T

[

H2(k)P (k/k + l)H2(k)T + R2(k)
]−1

Note that, as in the standard Kalman Filter, the
matrix to be inverted is the covariance of the mea-
surement error, except that now the computation
is performed after smoothing:

Pz̃ [k/k + l] =H2(k)P (k/k + l)H2(k)T+R2(k)

Plugging the optimal gain in the expression for
the covariance above, yields after some simplifica-
tions:

P [k + l/k + l, k] = P [k + l/k + l]−

P[k + l, k/k + l]H2(k)T Pz̃
−1H2(k)P[k, k + l/k + l].

The following matrices are involved in the com-
putation of the optimal gain and the optimal
covariance:

(1) P [k + l/k + l]: computed by the Kalman
Filter, by using the measurements z1[j], j =
k, · · · , k + l.



(2) P [k/k+l]: computed by the optimal smoother,
by using the measurements z1[j], j =
k, · · · , k + l.

(3) P [k + l, k/k + l] = Ex̃[k + l/k + l]x̃[k/k + l]T :
a recursive formula for this term is developed
next.

Using lengthy calculation, one can get:

P [k + l, k/k + l] = (I −K1(k + l)H1(k + l))

Φ(k + l, k + l − 1)P [k + l − 1, k/k + l − 1],

showing that the covariance matrix can be com-
puted via a simple recursion, initialized with
P [k, k/k] = P [k/k]. It is informative to modify
the recursion to:

Φ̂[k + l, k/k + l] = (I −K1(k + l)H1(k + l))

Φ(k + l, k + l − 1)Φ̂[k + l − 1, k/k + l − 1],

initialized with Φ̂[k, k/k] = I . Then:

P [k + l, k/k + l] = Φ̂[k + l, k/k + l]P [k, k],

and also:

K2(k/k + 1) = Φ̂[k + l, k/k + l]K2(k)

4. OPTIMAL COMBINATION WITHOUT
SMOOTHING

The purpose of this section is to relax the assump-
tion that the validity time of the measurement is
known before the measurement actually becomes
available. This problem may be of interest when-
ever measurements are not synchronized. In prin-
ciple, the problem could be solve by ”smoothing”
the data over the entire lap where the measure-
ment is expected. However, we will assume that
real-time or memory constraints prevent make
this approach infeasible. Since validity time is not
known in advance, then the state estimate cannot
be smooth and hence the optimal estimate will
take the form:

x̌[k + l/k + l, k] = x̌[k + l/k + l]+

Ǩ2(k/k + l)H2(k)x̃[k/k + l] +Ǩ2(k/k + l)v2[k].

The estimate and filter gain are called x̌[·/·] and
Ǩ(·/·) to differentiate them from the estimate
and gains computed in the previous section. The
estimation error, denoted by x̆[·/·] is hence:

x̆[k + l/k + l, k] = x̃[k + l/k + l]

−Ǩ2(k/k + l)H2(k)x̃[k/k]− Ǩ2(k/k + l)v2[k].

Following the steps of the previous section, the co-
variance of this estimation error can be evaluated
to be:

P̌ [k + l/k + l, k] = P [k + l/k + l]+

Ǩ2(k/k + l)
[

H2(k)P (k/k)H2(k)T + R2(k)
]

K2(k/k + l)T −

P (k + l, k/k + l, k)H2(k)T Ǩ2(k/k + l)T −

Ǩ2(k/k + l)H2(k)P (k + l, k/k + l, k)T

where

P (k + l, k/k + l, k) = Ex̃[k + l/k + l]x̃[k/k]T .

The corresponding optimal gain and estimation
covariance are given by:

Ǩ2(k/k + l) = P (k + l, k/k + l, k)

·H2(k)T
(

H2(k)P [k/k]H2(k)T + R2(k)
)

−1

and

P̌ [k + l/k + l, k] = P [k + l/k + l]

−P (k + l, k/k + l, k)H2(k)T

·
(

H2(k)P [k/k]H2(k)T + R2(k)
)−1

H2(k)

·P (k + l, k/k + l, k)T .

Compare these two equations with the expressions
in the previous section. Following analogous steps
as above, the covariance P (k + l, k/k + l, k) can
be evaluated recursively as:

P (k + l, k/k + l, k) = (I −K1(k + l)H1(k + l))

Φ(k + l, k + l − 1)P (k + l − 1, k/k + l − 1, k)

with initial condition:

P (k, k/k, k) = P (k/k).

Notice that this recursion is exactly the same
as the one in the section above. Indeed, the
whole filtering scheme can be obtained by setting
N [·/·] = 0. As a final remark, it can be shown
that the improvement achieved by the filter in
the previous section is directly proportional to
the covariance reduction due to smoothing. Since
the effect of smoothing is relatively small when
the filter has reached steady-state, one would
rather prefer to eliminate the smoothing stage and
favor the simpler second option considered in the
present section.

5. THE ALGORITHM

In this section we will provide the sketch of an al-
gorithm for incorporating delayed measurements
into the filtering scheme, as introduced in Section
3. From the observation above, an outline of the
algorithm in Section 4 can be obtained by remov-
ing the lines corresponding to the implementation



of the smoothing algorithm and setting N = 0.
Suppose k is the validity time of a new measure
z2. Then:

(1) Set l = 0 and:

x̂s = x̂[k/k] Dx = P [k/k]Φ(k + 1, k)T

Ps = P [k/k] Pp = P [k/k]

(2) Set l = l + 1.
(3) Do one iteration of the Kalman Filter using

the measurement z1[k + l].
(4) Do one iteration of the Kalman Smoother

using the measurement z1[k + l]:
(5) Update the covariance for the Delayed Filter:

Pp = (I −K1(k + l)H1(k + l))

·Φ(k + l, k + l − 1)Pp

(6) When a new measurement z2[k] becomes
available, then:

(7) Compute the optimal gain for incorporating
delayed measurements and update the cur-
rent estimate:

K2(k/k + l) = PpH2(k)T

[

H2(k)PsH2(k)T + R2(k)
]

−1

x̂[k + l/k + l, k] = x̂[k + l/k + l] +

K2(k/k + l) [z2[k]−H2(k)x̂[k/k + l]]

(8) Update the state error covariance:

P [k + l/k + l, k] = P [k + l/k + l]− Pp

·H2(k)T
[

H2(k)PsH2(k)T + R2(k)
]

−1

·H2(k)P T
p

6. CONCLUSIONS

This note contains a complete recursive solution
for a filtering problem involving measurements
with different time-delays. We showed by using
an example that the ”intuitive” solution to the
problem works only in special cases and showed a
solution based on careful tracking of the estimates
and their covariances. The solution is attractive
since, as shown in the Appendix, it can be imple-
mented using Bierman’s UD factorization.
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Appendix A. IMPLEMENTATION OF THE
NEW FILTER

This appendix discusses the implementation of the
filter presented in the note using a UD Kalman
Filter. Recall that the main difficulty when im-
plementing this filter is that measurements are
valid for time tT , the current measurement time
is tM , but numerous other measurements have
been processed between tT and tM . As mentioned
above, the update has the form:

PT = P − PpH
T

(

HP0H
T + R

)

−1
HP T

p

where:

P State error covariance before the new
update (at t−M )

PT State error covariance after the new
update (at t+M )

Pp Cross-covariance between the error state
at tT and at tM

P0 State error covariance at tT
H Measurement matrix
R Measurement noise covariance matrix,

assumed diagonal

Moreover, the cross-covariance matrix can be fac-
torized as:

Pp = P̂pP0 (A.1)

Now suppose that P is given via its UD factor-
ization (Bierman, 1977) P = UDUT , where U
is a unitary upper triangular matrix and D is a
diagonal matrix with positive entries. We want to
show how to compute the updated factors

PT = UT DT UT
T

without passing through the covariance calcula-
tions. To do this, one needs to prove that the
measurements can be processed in a sequential
manner. This can be done using an argument
as the one in (Grewal and Andrews, 1993), but
matrix manipulations seem to produce the result
more directly. Start by writing:



H =

[

h
H2

]

, R =

[

r 0
0 R2

]

After lengthy calculations, one gets:

PT = P − Pph
T

(

hT P0h + r
)−1

hP T
p −

Pp

(

hT r−1hP0 + I
)−1

HT
2

[

H2

(

I + P0h
T r−1h

)

−1
P0H

T
2 + R2

]

−1

H2

(

I + PhT r−1h
)

−1
P T

p

Using the formula for the inverse of a rank-one
perturbation, write:

P (1)
p =

[

I − hT
1

(

r + hP0h
T
)

−1
hP0

]

(A.2)

Also:

P
(1)
0 = P0 − P0h

T
(

hP0h
T + r

)

−1
hP0

Notice that using the definition Eq.A.1 in A.2,

we can write P
(1)
p = P̂pP

(1)
0 . An algorithm for

processing the measurements sequentially can be
given as follows:

(1) Set P (0) = P , P
(0)
0 = P0, P

(0)
p = Pp.

(2) For i = 1, · · · , m, where m is the number of
measurements, set:

h ← H(i) (measurement vector
corresponding to the i-th
measurement)

r ← R(i, i) (noise covariance of the
i-th measurement)

and compute

P (i) = P (i−1) −

P (i−1)
p hT

(

hP
(i−1)
0 hT + r

)

−1

hP (i−1)T
p

P
(i)
0 = P

(i−1)
0 −

P
(i−1)
0 hT

(

hP
(i−1)
0 hT + r

)

−1

hP
(i−1)
0

P (i)
p = P (i−1)

p

[

I−hT
1

(

r + hP
(i−1)
0 hT

)

−1

hP0

]

Alternatively P
(i)
p = PpP

(i)
0 .

(3) Set PT = P (m).

When iterating over the measurements, one needs
to implement the two recursions above in an effi-
cient manner, compatible with the UD factoriza-

tion. The recursion for P
(i)
0 is the case considered

by the Bierman algorithm and hence, assuming
that P0 = U0D0U

T
0 that algorithm can be used

to update the factors. On the other hand, the
iteration for P (i) falls within the general case of
degree-one perturbations to a UD factorization.
The algorithm for degree-one perturbations can
be described as follows. Suppose we write:

WEW T = UDUT + αvvT

where U is a unitary upper triangular matrix, D
is a positive diagonal matrix, α is a scalar and
v is a column vector of compatible dimension.
The objective is to compute the unitary upper
triangular matrix W and the positive diagonal
matrix E. In order to see how this can be done,
write:

W =

[

W1 w2

0 1

]

, E =

[

E1 0
0 e2

]

,

U =

[

U1 u2

0 1

]

, D =

[

D1 0
0 d2

]

and v =

[

v1

v2

]

. Then:

[

W1E1W
T
1 + e2w2w

T
2 e2w2

e2w
T
2 e2

]

=

[

U1D1U
T
1 + d2u2u

T
2 + αv1v

T
1 d2u2 + αv2v1

d2u
T
2 + αv2v

T
1 d2 + αv2

2

]

.

From this equation:

e2 = d2 + αv2 (A.3)

w2 =
d2u2 + αv2v1

e2
. (A.4)

Replacing these values in the 1–1 block above:

W1E1W
T
1 +

(d2u2 + αv2v1) (d2u2 + αv2v1)
T

d2 + αvT
2

= U1D1U
T
1 + d2u2u

T
2 + αv1v

T
1 .

After some simple manipulations, this expression
can be simplified to:

W1E1W
T
1 = U1D1U

T
1 +

d2α

d2 + αv2
2

· (v1 − v2u2) (v1 − v2u2)
T

This equation has exactly the same form as the
original one of the problem, except that now the
size of the matrices is reduced by one. The follow-
ing algorithm can then construct the updated UD
factorization directly from the original ones and
the degree-one perturbation.

(1) Compute e2 and w2 using A.3 and A.4.
(2) Re-assign:

α←
d2α

d2 + αv2
2

, v ← v1 − v2u

(3) Repeat step 1 until v reduces to a scalar.

This algorithm can now be used to update the
recursion for P (i) by making the appropriate iden-
tifications.


