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Abstract: The left-inverse system with minimal order of a discrete-time nonlinear
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having minimal order.
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1. INTRODUCTION

Inversion is one of the fundamental issues in sys-
tems theory. The construction of a minimal order
left-inverse for a nonlinear system is of both theo-
retical and practical importance. Many signal pro-
cessing problems can be thought of as dynamical
system inversion problems. For example nonlinear
inversion problems occur in digital communica-
tions where a coded signal can be represented
as the output of a nonlinear dynamical system
and finding an inverse system has practical signif-
icance. This paper focuses on the theory and the
derivation of constructive procedures for deter-
mining a minimal order left-inverse for nonlinear
systems.

The first systematic results relevant to nonlin-
ear system inversion problems were given in (
Hirschorn, 1979; Hirschorn, 1979), later followed
by further results in (Di Benedetto,et al., 1993;
Conte et al., 1999; Zheng & Cao, 1993; Cao
& Zheng, 1992; Devasia et al., 1998; Fliess,
1986; Singh, 1981; Singh, 1982). These papers all
studied continuous-time nonlinear systems. For
discrete-time nonlinear systems there are also
some significant results. Kotta systematically con-
sidered right inversion problems for discrete-time
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nonlinear control in her book (Kotta, 1995), where
many references are cited. In this paper we dis-
cuss the left-inversion problem for discrete-time
systems. If the dimension of the input and output
vectors are the same, then the invertibility con-
ditions for left-inversion and right-inversion are
equivalent. However, in general, right-inversion
and left-inversion are different problems. Right-
inversion relates to the input-output decoupling
problem and is sometimes referred to as the decou-
pling controller problem. Left-inversion is mainly
related to the system zeros, and a left-inverse gives
the structure of the zero-dynamics of a system.
Kotta studies the reduced-order right-inverse sys-
tem of discrete-time systems (Kotta, 1995) only.
The structure of the minimal order left-inverse
for discrete-time systems has not been studied in
the open literature to our knowledge. We use the
linear algebraic approach introduced in (Grizzle,
1993; Aranda-Bricaire, et al., 1996), which ex-
tends the results in (Di Benedetto,et al., 1989). It
is important to point out that the methods used
for continuous-time nonlinear system inversion are
not always readily applicable to the discrete-time
case. The algorithms presented in this paper for
the construction of a reduced order left-inverse
for a discrete-time nonlinear system are not easily
related to any counterparts in the continuous-time
case.
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Section 2 presents certain required results on
discrete-time nonlinear systems and differential
linear algebra. Section 3 then uses these results
to derive the structure of an inverse for a nonlin-
ear system. Two procedures for constructing an
inverse are then presented in Section 4 followed
by a proof that the construction procedures lead
to minimal order inverses and an example that
demonstrates how to use the procedures.

2. PROBLEM FORMULATION AND
MATHEMATICAL PRELIMINARIES

Consider the discrete-time nonlinear dynamical
system

x[k + 1] = f(x[k], u[k]),
y[k] = h(x[k], u[k]) (1)

where x[k] ∈ Rn, u[k] ∈ Rm, y[k] ∈ Rp are the
state, input and output vectors, respectively. We
assume that f and h are analytic vector functions
over an open dense subset of Rn+m.

Our aim is to construct a minimal order left
inverse dynamical system

z[k + 1] = ψ(z[k], y[k], · · · , y[k + r])
w[k] = η(z[k], y[k], · · · , y[k + r]) (2)

where z[k] ∈ Rq and r is a properly chosen
positive integer such that the output w(k) of (2) is
equal to the input of system (1) when the output
vectors {y[k], y[k+1], · · · , y[k+r]}; k ≥ 0 of system
(1) are taken as the input vectors of (2).

To avoid singularities, we assume that the map
f(·, ·) is generically a submersion, i.e. f is a
submersive map on an open and dense subset of
Rn+m. Under this assumption the discrete-time
dynamics create a type of group action (refer to
(Grizzle, 1993) for details). Thus given the initial
state and input signal we can recursively calculate
the output signal using (1).

Using the formal differential rule we have for each
j ∈ p := {1, 2, · · · , p} and 0 ≤ k ≤ N + 1

dyj [k] =
n∑

i=1

∂yj [k]
∂xi

dxi +
k∑

l=0

m∑

i=1

∂yj [k]
∂ui[l]

dui[l](3)

Let K denote the field of meromorphic func-
tions in variables {x, u[0], · · · , u[N ]}, where N
is a sufficiently large positive integer. The field
of meromorphic functions is defined as the quo-
tient field of a ring of analytical functions (Conte
et al., 1999). The use of meromorphic function is
essential for carrying out arithmetic operations,
particularly division.

Define dx := {dx1[0], · · · , dxn[0]} and du[0] :=
{du1[0], · · · , dum[0]} and vector spaces

X ∗ := spanK{dx},
U∗ := spanK{du[0], du[1], · · · , du[N ]},
Y∗ := spanK{dy[0], dy[1], · · · , dy[N ]}.

(4)

We will sometimes refer to X ∗ and U∗ as simply
the state space and input space.

We need two notions in order to study the nonlin-
ear system inversion problem as follows (Grizzle,
1993; Aranda-Bricaire, et al., 1996). Difference-
field F , which is a field equipped with a shift-
operation δ : F → F ; and Difference vector space
V∗ over a difference-field F , which is a vector
space equipped with a shift operation δ : V∗ →
V∗.
Thus, we define the shift operator δ : K → K, η 7→
δη as follows. For any η ∈ K

δη(x, u[0], · · · , u[k − 1])
= η(f(x, u[0]), u[1], · · · , u[k]) (5)

which plays the same role in a discrete-time sys-
tem as the derivative of a function of the state
and input variables with respect to time does in a
continuous-time system.

It is easy to show that the meromorphic function
field K with a shift-operation δ defined by (5) is a
difference field.

For vector space E∗ := X ∗ ⊕ U∗ and a vector
ω = αdx +

∑k
i=0 βidu(k) ∈ E∗, where α, βi; i =

0, 1, · · · , k are elements of K, we define a shift
operation δ : E∗ → E∗ as

δω = δαdδx +
k∑

i=0

δβkdδu(k)

= δα[
∂f

∂x
dx +

∂f

∂u(0)
du(0)]

+
k∑

i=0

δβkdu(k + 1) ∈ E∗

(6)

where δα, δβi, i = 0, 1, · · · , k are elements of K
according to (5) . Thus, the vector space E∗ :=
X ∗⊕U∗ with shift operation δ defined by (6) is a
difference vector space.

The maps δ can be used to calculate dyi[k +1] for
k = 0, 1, 2, · · · , recursively as

dyi[k + 1] = d(δyi[k]) =
n∑

j=1

δ(
∂yi[k]
∂xj

)dxj [1]

+
k∑

l=0

m∑

j=1

δ(
∂yi[k]
∂uj [l]

)duj [l + 1]

(7)



Given a set of functions {θi ∈ K, i ∈ I}, where
I is a countable index set, we order the vectors
relevant to the set of functions in the following
ordering set.

dθ1, dθ2, · · · , dθk, · · · (8)

In (8) we use the notation dθi < dθj if i < j, and
say that dθi is on the left of dθj

Definition 2.1. Given an order of vector set S =
{dθi, i ∈ I} in the form (8), a vector dθi is called
left-dependent in the ordering set if

dθi ∈ spanK{dθj ∈ S with dθj < dθi}
otherwise, dθi is called left-independent (or inde-
pendent).

Lemma 1. Assume that {θ, θ1, θ2, · · · , θq} ⊂ K
and dθi; i ∈ q, are independent vectors. If

dθ =
q∑

i=1

αidθi; αi ∈ K, i = 1, 2, · · · , q

then there exists a function, at least locally, such
that

θ = φ(θ1, θ2, · · · , θq)

Remark 2.1. The function φ in Lemma 1 can be
calculated numerically (see (Lang, 1999)).

In our linear algebraic framework observability of
system (1) can be described as follows.

Definition 2.2. System (1) is observable if

dx ⊂ Y∗ + U∗ (9)

Following Lemma 1 the initial state x[0] can be
determined from input-output data if the system
is observable.

3. STRUCTURE OF LEFT-INVERSE
SYSTEMS

The left invertibility of system (1) can be de-
scribed as follows.

Definition 3.1. System (1) is left invertible if

du ∈ X ∗ + Y∗ (10)

By this definition of invertibility

du(:= {du1[0], du2[0], · · · , dum[0]}) can be spanned
by dx, dy[0], dy[1], · · · , dy[r] for some integer r ≥
1. Then from Lemma 1 we have

u[0] = ϕ(x, y[0], y[1], · · · , y[r]) (11)

This further implies that the output data can be
calculated from the state and input data if the
system is left invertible. As the system is time-
invariant, we have for k ≥ 1

u[k] = ϕ(x[k], y[k], y[k + 1] · · · , y[k + r]) (12)

Recursively applying (1) and (11), (12) we have

Proposition 1. System (1) is left-invertible if and
only if

U∗ ⊂ X ∗ + Y∗ (13)

Definition 3.2. An inverse system is described by
a dynamical system

z[k + 1] = ψ(z[k], y[k], · · · , y[k + r])
w[k] = η(z[k], y[k], · · · , y[k + r]) (14)

where z[k] ∈ Rq and r is a properly chosen
positive integer. (14) is an inverse system for
system (1) if there exists z[0] = z0 such that
the output w(k) of (14) is equal to the input of
system (1) when the output vectors {y[k], y[k +
1], · · · , y[k + r]}; k ≥ 0 of system (1) are taken as
the input vectors of (14).

Assume that system (1) is left invertible, then by
(11), (12) we have

x[k + 1] = f(x[k], u[k])
= f(x[k], ϕ(x[k], y[k], · · · , y[k + r]))
= φ(x[k], y[k], · · · , y[k + r])

(15)

Therefore, (15) together with (12) implies the
existence of a left inverse for system (1) if (1)
is left-invertible. The order of an inverse system
is not necessarily equal to n. In general, we can
construct an inverse with order lower than n and
the lowest order inverse is called the reduced
inverse of system (1).

Lemma 2. Dynamical system (14) is an inverse
of system (1) if and only if there are variables
denoted by {z1[k], z2[k], · · · , zq[k]} ⊂ K such
that du1[k], · · · , dum[k] and dz1[k + 1], dz2[k +
1], · · · , dzq[k + 1] are left-dependent in the follow-
ing two ordering sets in factor space E∗

Y∗ .

dz1[k], dz2[k], · · · , dzq[k], du1[k],
du2[k] · · · , dum[k] (mod Y∗) (16)

and

dz1[k], dz2[k], · · · , dzq[k], dz1[k + 1],
dz2[k + 1], · · · , dzq[k + 1] (mod Y∗) (17)



where k ≥ 0

Since the systems considered in this paper are
time-invariant, the dependence and independence
of a vector in a ordering set is independent of the
choice of the time instant k hence below we let
k = 0.

4. CONSTRUCTION OF LEFT INVERSE
SYSTEMS AND MINIMALITY

We are now in a position to describe algorithms
for constructing dynamical systems with are the
left-inverse of system (1). By Lemma 2 the con-
struction of an inverse can be carried out using
the following two steps:

Step 1: Find a subset {zi; i ∈ γ} of K, which
can be written as {z1[0], z2[0], · · · , zγ [0]}, such
that du1[0], · · · , dum[0] are left-dependent in the
following ordering set:

dz1[0], dz2[0], · · · , dzγ [0], du1[0],
du2[0] · · · , dum[0] (mod Y∗) (18)

Step 2: Check the left-dependence of each vector
from left to right in the following ordering set:

dz1[0], dz2[0], · · · , dzγ [0], · · · , dz1[k],
dz2[k] · · · , dzγ [k], · · · (mod Y∗) (19)

By abuse of notation, we denote all left-independent
vectors {dzi[s], i ∈ γ, s ∈ k} in ordering set (19)
by dzγ+1[0], dzγ+2[0], · · · , dzq[0].

We show how to construct variables {z1, z2, · · · , zγ}
when system (1) is left-invertible. We also show
that the left-independent vectors in (19) are fi-
nite, i.e. q < ∞. Once the q vectors dz[0] =
{dz1[0], dz2[0], · · · , dzq[0]} are obtained, the q vec-
tors dz[1] = {dz1[1], dz2[1], · · · , dzq[1]} will be
left-dependent in ordering set (17). Therefore, by
Lemma 2, dzi[0]; i ∈ q can be taken as a basis for
the (differential) state space of an inverse system.

We now present two methods for determining
{zi; i ∈ γ}.

4.1 Method One

Consider the following ordering set:

du1[0], du2[0], · · · , dum[0], · · · , du1[n− 1],
du2[n− 1] · · · , dum[n− 1] (mod Y∗) (20)

where n(=dim x) is the dimension of the state
space of system(1).

Let R := {dui[j], dyk[l]; 1 ≤ i ≤ m, 0 ≤ j ≤ n−
1, 1 ≤ k ≤ p, 0 ≤ l ≤ N}, then under the
assumption that system (1) is observable we have

X ∗ ⊂ spanK{R}
and from the definition of R

Y∗ ⊂ spanK{R}

If system (1) is left invertible, then

X ∗ + Y∗ ⊂ spanK{R} ⊂ X ∗ + Y∗ (21)

Define a subset of U∗ such that

L := {dui[k]; dui[k] is left independent
in(20) for, i ∈ m, 0 ≤ k ≤ n− 1.} (22)

Thus,

X ∗ + Y∗ = spanK{L}+ Y∗ = spanK{R}

If we let γ := |L| denote the cardinality of the
set L, then (21) implies that γ is independent of
the chosen N provided that N is large enough (
(Zheng & Cao, 1990)). Thus, we define {dzi; i ∈
γ} := L.

Letting dz denote {dz1, dz2, · · · , dzγ}, it follows
that for i ∈ m

ui[0] ∈ X ∗ + Y∗
= spanK{dz, dy[0], dy[1], · · · , dy[N ]} (23)

This implies that there exists, at least locally, a
map such that for some r ≥ 1

u[0] = η(z[0], y[0], · · · , y[r]) (24)

where zi[0] = zi; i ∈ γ.

Since dz[0] = L, (21) implies that dz[1] ∈
spanK{L} + Y∗. Therefore, by Lemma 2 there
exists a dynamical system, at least locally, such
that

z[1] = ψ(z[0], y[0], y[1], · · · , y[r + 1]) (25)

As system (1) is time-invariant, (24) and (25)
forms an inverse system for system (1).

Thus, a left-inverse system has been constructed.

4.2 Method Two

In this method we do not assume that system (1)
is observable. Consider the following two ordering
sets:



du1[0], · · · , dum[0], · · · , du1[n− 1], · · · ,
dum[n− 1], dx1, dx2, · · · , dxn (mod Y∗) (26)

and

dx1, dx2, · · · , dxn (mod Y∗) (27)

Define γ1 := |L1|, where

L1 := {dxi; dxi is left independent in (26), i ∈ n}

Remark 4.1. It is easy to see that all vectors in
L1 are unobservable under definition (9).

Define γ2 := |L2|, where

L2 := {dxi; dxi i ∈ n}} with dxi i ∈ n is
left independent in (27) and observe that since
L1 ⊂ L2 it follows that γ1 ≤ γ2. Under the
assumption that system (1) is left invertible, we
have the following

Theorem 4.1. γ2 − γ1 = γ, where the γ is defined
in section 4.1 above.

Proof: By left invertibility of system (1) and (13)

X ∗ + U∗ + Y∗ = X ∗ + Y∗ = X ∗ + U∗

Delete dependent vectors of dx in (26), (27) and
change, if necessary, the order of coordinates of
state variables, we obtain

X ∗ + U∗ + Y∗
= spanK{dy[0], dy[1], · · · , · · · , dy[N ], du[0],

· · · , du[n− 1], dx1, dx2, · · · , dxγ1}

= spanK{dy[0], dy[1], · · · , · · · , dy[N ],
dx1, dx2, · · · , dxγ1 , · · · , dxγ2}

(28)

which further implies that

dim spanK{dy[0], dy[1], · · · , · · · , dy[N ], du[0],
· · · , du[n− 1], dx1, dx2, · · · , dxγ1}

−dim spanK{dy[0], dy[1], · · · , · · · , dy[N ]}
= dim spanK{dy[0], dy[1], · · · , · · · , dy[N ],

dx1, dx2, · · · , dxγ1 , dxγ1+1, · · · , dxγ2}
−dim spanK{dy[0], dy[1], · · · , · · · , dy[N ]}

(29)

As {dxi; i ∈ γ
1
} and {dxj ; j ∈ γ

2
} are left-

independent in ordering set (26) and (27), repec-
tively, we obtain that

γ + γ1 = γ2

2

We can now present the second method for con-
structing a left-inverse of system (1). By order-
ing sets (26), (27) we define z1 = xγ1+1, z2 =
xγ1+2, · · · , zγ = xγ2 . By definition dx1, dx2, · · · , dxγ1

are left independent in both (26) and (27).

It is known from invertibility and the definition of
L2 that

spanK{du[0], · · · , du[n− 1]}
⊂ spanK{dz, dy[0], · · · , · · · , dy[N ]}

It must therefore hold that

du[0] ⊂ spanK{dz, dy[0], · · · , · · · , dy[N ]} (30)

On the other hand, dxγ1+1 · · · , dxγ2 are left depen-
dent in ordering set (26) even if dx1, dx2, · · · , dxγ1

are deleted from (26) because they are observable,
i.e. {dxj ; γ1 < j ≤ γ2} ⊂ Y∗+U∗ by the definition
of L1. Thus,

z[1] ⊂ spanK{du[0], · · · , du[n− 1]}
+spanK{dz, dy[0], dy[1], · · · , · · · , dy[N ]}
⊂ spanK{dz, dy[0], dy[1], · · · , · · · , dy[N ]}

(31)

Therefore, by (30) and (31) another structure for
a left inverse system is obtained by Lemma 2.

Theorem 4.2.

(1) The minimal order of inverse systems of sys-
tem (1) is γ = |L|.
(2) The inverse systems constructed in the previ-
ous section are minimal order inverse systems of
system (1)

Proof: Assume there exists an inverse system
described by (14). For N ≥ k ≥ 0

spanK{dw[k]} ⊂ spanK{dz, dy[0], · · · , · · · , dy[N ]}
Let w[k] = u[k] and dim z = q, then for i ∈
m, N ≥ k ≥ 0

dui[k] ∈ spanK{dz, dy[0], dy[1], · · · , · · · , dy[N ]}
Thus, dui[k] can be represented as a function of
some variables of {dz, dy[0], dy[1], · · · , · · · , dy[N ]}
for each i, k.

By definition

dim spanK{dui[k]} = γ
(mod spanK{dy[0], dy[1], · · · , · · · , dy[N ]})

then γ ≤ q. (1) is proved. (2) is a consequence of
(1). 2

Example 4.1. Consider the following system.

x1[k + 1] = x2[k] + x4[k]u1[k]
x2[k + 1] = x1[k] + x3[k]
x3[k + 1] = x3[k] + x2[k]u2[k]

x4[k + 1] =
1
2
x1[k]x3[k]

y1[k] = x1[k]
y1[k] = x2[k]

(32)



Calculate the outputs of the system for k ≥ 0,

y1[0] = x1,
y2[0] = x2,
y1[1] = x2 + x4u1[0],
y2[1] = x1 + x3,

y1[2] = x1 + x3 +
1
2
x1x3u1[1],

y2[2] = x2 + x3 + x4u1[0] + x2u2[0],
y1[3] = x2 + x3 + x4u1[0] + x2u2[0]

+
1
2
(x2x3 + x2

2u2[0] + x3x4u1[0]

+x2x4u1[0]u2[0])u1[2],

y2[3] = x1 + 2x3 + x2u2[0] +
1
2
x1x3u1[1]+

(x1 + x3)u2[1],
...

(33)

It can be shown that

{du1[0], du2[0]} ⊂ X ∗ + Y∗

then the system is left invertible.

It can be check that du1[0] is the only left-
independent vector in the following ordering set

dy1[0], dy2[0], dy1[1], dy2[1], dy1[2], dy2[2], · · · ,
du1[0], du2[0], du1[1], du2[1], · · ·

In fact, u2[0] = y2[2]−y1[1]−y2[1]+y1[0]
y2[0]

.

As u1[1] = 2 y1[2]−y2[1]
y1[0]y2[1]−y2[0] , and

du2[1] ∈ spanK{dy1[0], dy2[0], dy1[1], dy2[1],
dy1[2], dy2[2], dy2[3], du1[0], du2[0], du1[1]}

By recursive calculation, we see that for k ≥
1, i = 1, 2

dui[k] ∈ spanK{du1[0], du2[0], · · · ,
du1[k − 1], du2[k − 1]}+ Y∗

du2[k] ∈ spanK{du1[0], du2[0], · · · , du2[k − 1],
du2[k − 1], du1[k]}+ Y∗

Thus, γ = 1. Now we construct a minimal order
inverse as follows. Let z = u1[0], then z[1] = u1[1].
The left inverse for k ≥ 0 becomes

z[k + 1] = 2
y1[k + 2]− y2[k + 1]
y1[k]y2[k + 1]− y2[k]

w1[k] = z[k]
w2[k](= u2[k])

=
y2[k + 2]− y1[k + 1]− y2[k + 1]− y1[k]

y2[k]

We let L2 = {dx4} and z = x4. Thus, z[1] =
x4[1] = 1

2x1x3 = 1
2y1[0](y2[1]− y1[0]).

As u1[0] = y1[1]−y2[0]
x4

, the left-inverse by the
second method is

z[k + 1] =
1
2
y1[k](y2[k + 1]− y1[k])

w1[k] (= u1[k]) =
y1[k + 1]− y2[k]

z[k]
w2[k] (= u2[k]) =

y2[k + 2]− y1[k + 1]− y2[k + 1] + y1[k]
y2[k]
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