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Abstract: This paper analyses the control of a DC-DC boost converter using both
instantaneous and averaged models. The control objectives are discussed and the
main focus is the load disturbance rejection. The transient performance is shown to
be limited by saturation constraints on the control variable. In particular, it is shown
that the transient behaviour of the output voltage in the presence of load disturbances
cannot be minimized beyond a certain limit by the control strategy. Simulation results
obtained using two different control laws put in evidence these limitations.
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1. INTRODUCTION

The DC-DC boost converter is an electronic sys-
tem which transfers electric power from a volt-
age source to an output load. The main task of
such a system is to provide a regulated output
voltage greater than its input voltage (Kassakian
et al., 1991). The boost performs this task by
means of switching elements that govern the en-
ergy transfer from the input to the output. The
circuit operation can be divided into two stages:
(i) the energy accumulation in the input inductor,
(ii) the energy transfer to the output capacitor.
The design of this system comprises, among other
things, choosing the best way to perform this
energy transfer with minimum losses.

Besides these efficiency issues, the boost output
should be robust with respect to load changes and
fluctuations of the input voltage source. While
the efficiency is basically a design problem, the
disturbance rejection is traditionally a control
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problem. This stated, the main objective in the
boost converter control is, in the presence of such
disturbances, to drive the output voltage back
to its nominal value with a minimum transient
behaviour.

This paper intents to show that the transient
behaviour of the output voltage in the presence
of load disturbances cannot be minimized beyond
a certain limit by the control strategy. This limit
arises from the inner structural characteristics of
the boost converter and can only be minimized if
the desired transient behaviour is taken into ac-
count in the design phase of this power electronic
device.

The paper is organized as follows. Section 2 briefly
describes the two main approaches to model the
boost converter; section 3 deals with the problem
of rejecting load disturbances considering the con-
straints imposed to the control by the switching
nature of the system. Section 4 presents simula-
tion results to compare the performance of two
different controllers, a linear PID and an adaptive
fixed-frequency sliding mode controller.
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2. DC-DC BOOST CONVERTER

The basic circuit topology of the DC-DC boost
converter is given in Fig. 1. All components are
considered ideal, which means that there is no par-
asitic resistance associated with the energy storing
elements or with the semiconductor elements that
perform the switching. The boost can operate
in both continuous conduction mode (CCM) and
discontinuous conduction mode (DCM). The sim-
ulation model used in this work incorporates these
two possible operation modes of the circuit.

Fig. 1. Ideal DC-DC boost model.

In Fig. 1, R stands for a load resistance and
E > 0 represents the available voltage source.
The voltage vout over R is the system output
which should be driven to a regulated desired
value vout = VC > E. The inductor current iL
and the capacitor voltage vC are taken as state
variables for a state space representation of the
system.

The circuit analysis of the boost converter in
Fig. 1 operating in CCM leads to the nonlinear
state space equation





ẋ1 = − 1
L

(1− q)x2 +
1
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E

ẋ2 =
1
C

(1− q)x1 − 1
RC

x2

(1)

where x1 = iL, x2 = vC and q represents the
discrete state of the switch.

It is important to remark that the discontinuous
conduction mode can be understood as the result
of a constraint in the state variable x1 expressed
by x1 ≥ 0. This constraint arises from the diode
characteristics. As an indirect consequence, the
output voltage represented by x2 is always non-
negative. Note that the instantaneous nonlinear
dynamic model expressed by (1) does not take
into account these constraints. In order to do
so, a more complex hybrid model comprising the
continuous and discrete dynamics of the system is
necessary.

Eq. (1) is known in the literature as the ideal in-
stantaneous model. It describes the instantaneous
dynamic of the state variables x1 and x2, including
the ripple caused by the high frequency switching.
This ripple can be eliminated from the model by
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Fig. 2. Equilibrium manifold with d as a parame-
ter.

using the averaging techniques described in Kas-
sakian et al. (1991) , which leads to an averaged
model that is formally identical to Eq. (1) with
the only difference that the instantaneous discrete
variable q is replaced by the continuous duty cycle
d and the variables x1 and x2 are the time local
averages of the instantaneous values of iL and vC

over one switching period. Each of these two ap-
proaches gives rise to different controller families:
(i) those based on the instantaneous model and
(ii) those based on the averaged model.

No matter how Eq. (1) is treated, the equilibrium
points the boost can exhibit are the same. They
can be calculated by imposing ẋ1 = 0 and ẋ2 = 0
and eliminating q from the resulting algebraic
system. This procedure gives the following set of
possible equilibria:

Γ =

{
(x1, x2) ∈ R2

/
x1 =

x2
2

RE

}
(2)

which is a 1-dimension manifold in the state space.
All equilibrium points of (1) must lie on the
manifold Γ regardless of the function q. When
q is replaced by its average d each point in Γ
corresponds to the equilibrium associated with a
constant value d = D. These equilibria are given
by (see Fig. 2)

X1 =
E

R(1−D)2
; X2 =

E

(1−D)
. (3)

Note that the set Γ depends on the values of R
and E.

2.1 Instantaneous Model

The controllers designed based on the instanta-
neous model generally act directly at the switch
deciding when it is to be commuted.

To analyse the instantaneous model each operat-
ing stage has to be considered separately. When
q = 0, Eq. (1) becomes
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(4)

The dynamic system described by Eq. (4) will be
referred to as the 0-structure of the boost con-
verter. This 0-structure exhibits a linear dynamic
around the unique equilibrium point

X0 =
[

x̄01

x̄02

]
=

[
E/R
E

]
. (5)

The eigenvalues associated with X0 are

λ1,2 = −α± jω = − 1
2RC ± j

√
1

LC − (
1

2RC

)2 (6)

assuming that L < 4R2C. A possible pair of
eigenvectors is

v1 =
[

1
L
−λ1

]
, v2 =

[
1
L
−λ2

]
. (7)

The analytic solution of this system is
[

x1(t)
x2(t)

]
= K1v1e

λ1t + K2v2e
λ2t + X0 (8)

where K1 and K2 are complex conjugate constants
chosen to meet the initial conditions x1(0) = x10

and x2(0) = x20 .

When q = 1 the system (1) reduces to




ẋ1 =
1
L

E

ẋ2 = − 1
RC

x2.

(9)

Eq. (9) will be referred to as the 1-structure of
the system (1). This structure has no equilibrium
points and its analytic solution is

{
x1(t) = x10 + E

L t

x2(t) = x20e
− t

RC .
(10)

All possible trajectories of the system (1), in open
or closed loop, are constructed with pieces of the
natural trajectories given by the solutions (8) and
(10). Fig. 3 shows an arbitrary trajectory as an
exemple.

2.2 Averaged and Linearized Models

Another possible approach to the analysis of the
boost converter is to consider Eq. (1) as the aver-
aged model. In this case, the switch is operated by
a PWM signal modulated by a continuous control
variable d that takes the place of q in (1) and
represents its duty cycle.
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Fig. 3. Natural trajectories.

Continuous nonlinear control functions can be
synthesized directly from the averaged nonlinear
model (Sira-Ramı́rez et al., 1997), (Escobar et
al., 1999) but the most traditional way to control
the boost is to linearize Eq. (1) around the desired
equilibrium point and to design a linear controller
for the linearized system (Martins et al., 1996).
After expanding the righthand side of (1) in
Taylor series and neglecting the nonlinear terms,
the linearized model becomes

[ ˙̃x1
˙̃x2

]
=

[
0 − (1−D)

L
(1−D)

C − 1
RC

]
·
[

x̃1

x̃2

]

+
[ VC

L

− IL

C

]
· d̃ +

[ 1
L 0
0 VC

R2C

]
·
[

ẽ
r̃

] (11)

where [IL VC ]T is the desired equilibrium point,
D, R and E are the nominal duty cycle, load and
voltage source, respectively. The control input is
represented by d̃, and the disturbance variables ẽ
and r̃ are fluctuations about the nominal values
of E and R, respectively. Note that this linearized
model is only valid near the operating point and
for small load or source disturbances. If the state
vector is far from the nominal equilibrium or if the
disturbance range is wide, the linearized model
loses its validity.

3. CONTROL OBJECTIVES AND
CONSTRAINTS

The DC-DC boost converter must be insensitive
with respect to load disturbances and fluctuations
of the voltage source. Therefore, the main control
objectives are to reject these kinds of disturbances
with a minimum transient behaviour and to drive
the output voltage back to its nominal value. This
section focuses on the load disturbance rejection
problem from a geometric approach of the satura-
tion constraint on the control variable d.

3.1 Constraint on the Control

Under the assumption that the switch operates ac-
cording to a high frequency PWM control signal,
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Fig. 4. Range of possible trajectories under con-
stant duty cycle subject to the saturation
limits d = 0 and d = 1.

it is possible to replace the discrete control vari-
able q by its duty cycle d. The control saturation is
inherent to this procedure and the saturation lim-
its correspond to the discrete states of the switch.
For this reason, the duty cycle can only vary in the
real interval [0, 1]. The examples shown in Fig. 4
illustrate this effect. All trajectories start from the
same initial condition and evolve according to a
fixed duty cycle d. It is clear from Fig. 4 that there
is a certain zone below the trajectories with d = 0
and d = 1 which cannot be achieved directly.

3.2 Load Disturbance Rejection

To analyse the load disturbance rejection it is
necessary to consider how a change in resistance
affects the state space trajectories. The solution
for the 1-structure presented in Eq. shows that the
current dynamic does not change because x1(t)
does not depend on R. On the other hand, (10)
shows that the voltage x2(t) decays slower with an
increase and faster with a decrease in the value of
R. The load change in the 0-structure case can be

shown to affect the system damping ξ = 1
2R

√
L
C

and the value of the equilibrium input current
x̄01 = E

R . As stated in section 2, the set Γ, loci of
all possible equilibria, also changes under a load
disturbance. This effect is shown in Fig. 5.

Suppose that a boost converter is required to
operate under a certain load range and that the
load increases or decreases instantaneously by
step changes. Under these hypotheses, the most
critical case occurs when the load changes from its
maximum value to its minimum and then returns
to its maximum. To illustrate this idea, consider a
250W DC-DC boost with C = 10µF , L = 1.4mH,
E = 48V and VC = 100V operating at a 40kHz
frequency. The load range goes from 20% (R =
200Ω) up to 100% (R = 40Ω) of the nominal
power. The equilibrium manifolds corresponding
to these two extreme cases are depicted in Fig. 5.

Consider the case where the boost is in steady
state working with full load and the output resis-
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Fig. 5. System trajectory for saturated duty cycle
d = 0.
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tance suddenly changes from Ra = 40Ω to Rb =
200Ω. The transient behaviour of the open loop
boost is poorly damped and exhibits a quite high
voltage overshoot (about 45%). Besides, during
the transient, the boost operates in discontinuous
conduction mode for a certain time interval (see
Figs. 6 and 7).

Thus, the control task is to drive the system
state from Xa to Xb minimizing this undesir-
able transient effects. In other words, the current
is required to decrease to x̄b1 within minimum
time and the voltage must settle in the desired
regulated value x̄b2 = VC after going through a
minimum overshoot also within minimum time.



In order to reach the new equilibrium point Xb in
a short time it is necessary to decrease the induc-
tor current as fast as possible. The only way to do
so is to saturate the duty cycle in its minimum
value, which means to leave the switch on the
position q = 0. In this case, the state vector moves
along the natural trajectory φ(t) of the 0-structure
of the system (see Fig. 5). This trajectory alone
does not lead to the desired equilibrium point.
It means that the duty cycle cannot remain in
its saturation value. At some point in the φ(t)
trajectory, the controller has to make the decision
of changing the value of the duty cycle in order to
force the state vector toward the point Xb. There
are basically two options for this decision: (i)
to leave the saturation before reaching the point
Xmax, or (ii) to leave the saturation after reaching
Xmax, which is the point of maximum voltage in
the saturated trajectory φ(t). This point repre-
sents the minimum voltage overshoot (about 23%)
that can be ideally achieved.

To reduce the voltage overshoot the duty cycle has
to increase, leaving the saturated value d = 0, be-
fore the state vector reaches the maximum point
of the natural trajectory. This procedure forces
the state vector to move near the equilibrium
manifold Γ. In the neighborhood of Γ, the magni-
tude of the average phase velocity vector is small.
This causes the state vector to converge slowly to
the new equilibrium point Xb.

If the state vector is required to converge fast to
the equilibrium point, the control has to drive the
system through a trajectory far from the equilib-
rium manifold Γ. If this condition is satisfied, then
the state trajectory evolves in a region where the
magnitude of the phase velocity vector is higher
than when it is near Γ. To reach such a region,
the state vector must necessarily pass by the point
Xmax. In this situation, the overshoot cannot be
reduced below the point Xmax. This behaviour
becomes clear by analysing the components of
the phase velocity vector of each structure of the
system.

The above geometric considerations show that
the control objectives of minimizing the overshoot
and minimizing the settling time are mutually
exclusive. Therefore, any compensator designed to
control the boost converter cannot achieve both
optimum performances. In order to exemplify this
limitation, a comparative study of two different
controllers is carried out in the next section.

4. COMPARING TWO DIFFERENT
CONTROLLERS

Consider first the linearized model (11). The
transfer function from the duty cycle to the output
voltage is

G(s) = −IL

C

s− R
L (1−D)2

s2 + 1
RC s + (1−D)2

LC

(12)

where IL = V 2
C

RE and the other parameters are
defined in Subsection 3.2.

A linear PID controller was designed by the root-
locus method for the linear model. The parame-
ters obtained by this procedure were finely tuned
via simulations of the closed loop nonlinear model
leading to the following controller:

C(s) = 0.3
s2 + 3000s + 35342

s(s + 2× 105)
. (13)

A second controller has been designed to be com-
pared with the classic linear PID. An adaptive
sliding mode controller that operates in fixed fre-
quency has been developed to achieve load distur-
bance rejection for the DC-DC boost converter.
Unlike traditional sliding mode strategy, a pulse
width modulator has been employed to make the
interface between the controller and the plant
in order to guarantee the fixed frequency opera-
tion. The load disturbance rejection is achieved by
adaptation of the control parameters via a static
estimate of the load resistance R. Its estimate, R̂,
is made by calculating the relation between the
average output voltage and the average output
current. This requires an extra sensor to mea-
sure this current. The control law is (DeCarlo et
al., 1988)

u(x) = ueq(x) + uN (x) (14)

where

ueq(x) = 1−
s1CE − s2L

x2

R̂

s1Cx2 − s2Lx1

uN (x) = γσ(x) = γ
(
s0(R̂) + s1x1 + s2x2

)
.

(15)

In the case of the boost converter, the control
variable u is the duty cycle d. The controller
parameters are γ = 0.002, s2 = −1, s1 = −55.8
and s0 = − s1VC

2

ER̂
− s2VC .

The phase plane trajectories of the system under
these two control laws are depicted in Fig. 8 for a
load transition from 40Ω to 200Ω at t = 2ms and
back to 40Ω at t = 10ms. The time evolution of
the state variables and the control input can be
seen in Fig. 9 and Fig. 10.

From the results obtained by simulation of the
DC-DC boost converter, it can be seen that the
qualitative behaviours of the closed-loop boost
with the two different controllers are very similar.
The settling time for the case of an increase in
resistance is about 2ms for both controllers. In the
case of a decrease in resistance it is approximately
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1ms. For both controllers the overshoot is about
25% of the nominal output voltage. This similarity
is due to the intrinsic constraint on the control
variable 0 ≤ d ≤ 1. Note that the transient parts
of the trajectories in Fig. 8 are very close to the
saturated trajectory φ(t). This indicates that the
performance achieved with these two controllers
can hardly be further improved, for any better
controller would meet the saturation constraint.

Despite the complexity of the nonlinear control,
its performance is not expressively better than
that of the linear PID controller. Nevertheless,
it can be shown that the equilibrium point is
globally asymptotically stable when subject to
the nonlinear controller. This is not the case for
the linear one, for which the equilibrium point is
only locally stable and has an attraction basin
associated to it. As a consequence of this local
stability, when the DC-DC boost converter is
controlled using a linear strategy, auxiliary soft
start circuitry is necessary to drive the system into
the region of attraction of the equilibrium point
in order for the controller to be able to act.
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Fig. 10. Time response for the sliding mode con-
troller.

5. CONCLUSIONS

The load disturbance rejection of the DC-DC
boost converter was shown to depend on the inner
structural characteristics of the system. The satu-
ration of the control variable imposes a definitive
limitation on the controller performance. To min-
imize the effect of load disturbances, the desired
transient behaviour of the output voltage has to
be considered in the design phase of the system,
for any possible controller would be limited by the
saturation of the duty cycle.

Since most power electronic devices are based
on switching, these kind of saturation effects are
always present. This suggests that the results
presented in this paper could be extended to other
devices.
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