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Abstract: This paper dev elopsa nonlinear charge con troller for gasoline direct
injection engines. The problem is to control the electronic throttle and the EGR
valv eto achiev ethe desired in tak emanifold pressure and the EGR o w. The
con trol design is based on a variant of a Lyapunov design procedure, the so called
Speed-Gradient approach. This methodology is reviewed, the con troller for the
electronic throttle and the EGR valv e is deriv ed in conjunction with an observer
for the EGR ow, stability of the closed loop system is rigorously analyzed and
experimental results demonstrating controller performance are reported.
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1. INTRODUCTION

Gasoline direct injection engine technology has
been actively pursued in recent years as a potent
aven uefor improving fuel economy of passenger
vehicles. Charge con trol is a critical feature of
these engine managements systems. It is respon-
sible for deliv eringdesired o w rates of air and
recirculated burnt gas (for reduction of oxides of
nitrogen emissions) into the engine cylinders, and
for pro viding real-time estimates of the in-cylinder
air charge and burnt gas fraction to torque and
aftertreatment con trollers (Kolmanovsky ,et al.,
2000b). As compared to conven tional engines chal-
lenges in the charge con trol for gasoline direct
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injection engines include operation at high in-
tak e manifold pressure, soot deposits in the in-
tak e ports and exhaust gas recirculation (EGR)
conduit caused by engine aging, and lean oper-
ation that produces exhaust con tainingboth air
and burnt gas. T oaddress these challenges, the
use of feedback and adaptation is essential (Kol-
manovsky ,et al., 2000b).

The present paper is concerned with the analysis
of a nonlinear feedback charge con troller dev el-
oped along the lines discussed in (Kolmanovsky ,
et al., 2000b). Speci�cally, the \Speed-Gradient"
methodology which underlies the development of
the controller is reviewed, the stability of the con-
troller is rigorously analyzed, and experimental
results demonstrating the controller performance
are reported.
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The controller design is based on an isothermal
intake manifold �lling and emptying model,

_p = cm(Wth +Wegr �Wcyl); (1)

where p is the intake manifold pressure,Wth is the
ow rate of air through the electronic throttle,
Wegr is the mass ow rate of the recirculated
exhaust gas through the exhaust gas recirculation
(EGR) valve, Wcyl is the total ow rate of air
and burnt gas into the cylinders, and cm is the
pumping constant that depends on the intake
manifold temperature. The throttle ow rate can
be modelled according to the so called \ori�ce"
equation as

Wth = fth(p)uth;

fth = �(
p

pa
) � pap

Ta
; (2)

where pa and Ta are the ambient pressure and
temperature (assumed constant), and uth is the
e�ective area of the throttle opening which is a
known function of throttle position. The nonlin-
earity � is de�ned as
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if x > 0:5.

Here  = 1:4 is the ratio of speci�c heats. The
EGR ow is modeled by a similar \ori�ce" equa-
tion as

Wegr = fegr(pe; Te)uegr ;

fegr = �(
p

pe
) � pep

Te
; (3)

where pe is the exhaust pressure, Te is the exhaust
temperature, and uegr is the EGR valve e�ective
ow area. The cylinder ow is modelled as

Wcyl = k0 + k1 � p; (4)

where k0 and k1 depend on engine speed and in-
take manifold temperature. The control inputs are
uth and uegr while engine speed, intake manifold
temperature, and exhaust pressure pe are treated
as model parameters.

2. CONTROL DESIGN METHODOLOGY

Consider a nonlinear control system of the form

_x = f(x) + g(x)u; (5)

where x is the n-vector state and u is them-vector
control. Given the desired equilibrium of (5), xd,
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Fig. 1. Schematics of a DISI engine.

suppose the feedforward control ud can be used to
maintain this equilibrium, i.e.,

f(xd) + g(xd)ud = 0:

Suppose now the input u is generated by apply-
ing, in addition to the above feedforward control
ud, a proportional feedback, up, and an integral
feedback, �. Furthermore, suppose the e�ect of
uncertainties and parameter variations can be rep-
resented by a constant disturbance w additive to
the control input. Thus

u = ud + up + � + w: (6)

The feedback components up and � are deter-
mined with the help of Speed-Gradient (SG) ap-
proach (Fradkov and Pogromsky,1999; Fradkov,
1990), which is reviewed next.

To be speci�c, consider a one step ahead model-
predictive control-based derivation of the SG con-
troller. Let Q(x) be the so called goal function. It
satis�es Q(xd) = 0, Q(x) � 0, and is chosen so
that the requirement

Q(x(t))! 0 as t!1 (7)

captures the control design objectives. For exam-
ple, one possible choice for Q is

Q =

nX
i=1

i(xi � xd;i)
2;

where the weights i reect the relative impor-
tance of di�erent state channels. Assuming that
u(t) is constant on [t; t+�t[, Q(x(t+�t)) can be
approximated for small �t as

Q(x(t+�t)) � Q(x(t)) + _Q(t)�t

= Q(x(t)) +

�
LfQ(x(t)) + LgQ(x(t))

�
u(t)�t;

where,

LfQ(x)
�
=

@Q

@x
(x)f(x); LgQ(x)

�
=

@Q

@x
(x)g(x):

The approximate cost can be regularized by aug-
menting a penalty on the proportional correction



and on the incremental change in the integral
correction:

Q(x(t)) +
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(8)

where � > 0, � > 0. The direct minimization of
the cost (8) with respect to up(t) and �(t) yields

up = ��(LgQ)
T; (9)

and
�(t) = �(t��t)� �(LgQ)

T�t:

The last equation is a discrete-time version of the
continuous-time update law

_� = ��(LgQ)
T: (10)

The term (LgQ)
T = (@Q

@x
g)T that appears on the

right-hand of (9), (10) can also be computed as
ru

_Q which is the gradient of the speed of change
of Q. Thus

up = ��ru
_Q; _� = ��ru

_Q:

Hence the control design (6),(9),(10) is referred to
as \Speed-Gradient."

The transient response of the closed loop system
can be shaped as desired by a proper choice of
the weights in the function Q. For gasoline direct
injection engines, this has been demonstrated in
(Kolmanovsky, et al., 2000a). Speci�cally, torque
control mode (with torque as the primary tracking
objective) or air-to-fuel ratio control mode (with
air-to-fuel ratio as the primary tracking objective)
can be enforced by proper selection of the weights
in Q. Additionally, through the augmentation to
Q of barrier functions, soft state constraints can
be enforced. In (Kolmanovsky, et al., 2000a) this
approach was used to enforce state constraints on
the air-to-fuel ratio and spark timing.

The stability analysis for the closed loop sys-
tem typically proceeds by considering a Lyapunov
function candidate of the form

V = Q+
1

2
(� + w)T��1(� + w): (11)

Its time derivative along the trajectories of the
system (5), (6), (9), (10), under an additional
assumption that _w � 0, satis�es

_V = (LfQ+ LgQud)� LgQ�(LgQ)
T:

The following suÆcient stability conditions fol-
lows by application of the Barbalat's lemma:

Proposition: Suppose that (i) Q(xd) = 0; Q(x) >
0 if x 6= xd and Q is twice continuously dif-
ferentiable in �c = fx : Q(x) � cg; (ii) the
achievability condition (Fradkov and Pogromsky,
1999) holds, i.e.,

��(Q(x)) + LgQ(x)�(LgQ(x))
T �

(LfQ(x) + LgQ(x)ud); (12)

for some m � m matrix � � 0, a continuously
di�erentiable function � that satis�es

�(0) = 0; �(z) > 0 if z > 0;

and for all x 2 �c; (iii) f; g are twice continuously
di�erentiable and bounded together with the �rst
and second derivatives in �c; (iv) the initial
conditions (x(0); �(0)) satisfy

Q(x(0)) +
1

2
(�(0) + w)T��1(�(0) + w) � c; (13)

(v) � > �, � > 0; (vi) _w � 0. Then the closed
loop system is Lyapunov stable and the closed
loop trajectories satisfy

lim
t!1

Q(x(t)) = 0; lim
t!1

x(t) = xd;

Q(x(t)) � c 8t:
If, furthermore, the matrix g(xd) has a full column
rank, then

lim
t!1

�(t) = �w:

The achievability condition (12) may be checked
either analytically or numerically. The purely nu-
merical approach proceeds by setting � = 0,
and maximizing (LfQ(x) +LgQ(x)ud) subject to
~c � Q(x) � c, where ~c > 0. Let z(~c) denote the
maximum. By analyzing z(~c) as a function of ~c,
a continuously di�erentiable function �, �(0) = 0,
�(~c) > 0 if ~c > 0, that yields ~z(~c) � ��(~c) may
be prescribed. If such � can be found, � = 0, �
satisfy the inequality in (12) for x 2 �c. If no
such � can be found, � > 0 needs to be considered.
As a heuristic approach, tuning the controller to
work well in simulations with a � > 0 and then
trying � slightly less than � works quite well.
See (Kolmanovsky, et. al., 2000a) for a speci�c
application.

In a situation when Q(x) � 0 but Q(x) > 0
for all x 6= xd does not hold, x(t) may not,
in general, converge to xd. It is still possible,
however, to demonstrate that LfQ(x(t)) ! 0
and LgQ(x(t)) ! 0. Note that LfQ(x) = 0,
LgQ(x) = 0 is a system of (m + 1) equations
in n unknowns. When (m + 1) � n, this system
may, frequently, have xd as the unique solution,
and, hence, x(t) ! xd. If n = m and the m �
m matrix g(xd) is nonsingular, �(t) ! �w. If
n > (m + 1), it is necessary to demonstrate that
the closed loop trajectories are bounded and that



LfQ(x(t)) = 0, LgQ(x(t)) = 0, _x(t) = f(x(t)) +
g(x(t))ud; for all t, imply that x(t) � xd. This can
be checked through an observability-like condition
in (Shiriaev and Fradkov, 1998).

Note that the form of the feedback (9) suggests
the connection with the conventional Control
Lyapunov Function methods, in particular, LgV -
techniques (Sepulchre, et al., 1997). The di�er-
ence is mainly in the approach: Q is selected by
the designer to capture the transient performance
objectives in the SG approach; Q is constructed
as a Control Lyapunov Function in the method-
ologies covered in (Sepulchre, et al., 1997). The
strength of SG approach is in the strong linkage
between control objectives and the selection of
the function Q. This greatly helps in the tuning
process. Speci�cally, if we are not satis�ed with
the transient response, we adjust the weights in Q
or augment barrier functions. The weakness of SG
approach is that the procedures to modify Q are
not readily available if the achievability condition
does not hold. The achievability condition, on the
other hand, is only suÆcient and the stability may
be veri�ed by other procedures. For example, nu-
merical simulations followed up by the numerical
construction of a Lyapunov function can be used.

3. CHARGE CONTROLLER DESIGN

The basic formulation of the charge control prob-
lem requires the control system to deliver the
desired value of the cylinder ow and the desired
burnt gas fraction in this ow. Since neither the
cylinder ow nor burnt gas fraction are measured,
the engine operation can be controlled using the
set-points for the intake manifold pressure, pd, and
for the EGR ow,Wegr;d. These set-points can be
backtracked from the set-points for the cylinder
ow and the burnt gas fraction (Kolmanovsky,
et al., 2000b). The intake manifold pressure is
measured but the EGR ow is not. The EGR
ow can, however, be estimated along the lines
discussed next.

The open-loop estimate of the EGR ow (3) de-
pends on the exhaust manifold pressure and tem-
perature which are not measured. The exhaust
temperature of an engine is known to change
with aging, hence, nominal maps predicting the
exhaust temperature will ultimately become inac-
curate. The EGR ow also depends on the EGR
valve position. While it is measured, it may not ac-
curately de�ne the e�ective ow area of the EGR
valve due to soot deposits that develop in direct
injection spark ignition engines (Kolmanovsky, et
al., 2000b; Kolmanovsky and Siverguina, 2001).
Even if soot deposits were not an issue, the EGR
ow in small engines exhibits engine speed de-
pendence in the actual experiments. Thus the

prediction of the EGR ow on the basis of (3)
may not be accurate.

An alternative procedure for predicting the EGR
valve ow involves a dynamic input observer (Kol-
manovsky, et al., 2000b),

_� = �cm(Ŵegr �Wegr;ss); (14)

where

Ŵegr;ss = Ŵcyl �Wth; (15)

is the steady-state estimate of the EGR ow and

Ŵegr = �p� �; (16)

is the dynamic estimate of the EGR ow. An
accurate estimate ofWcyl, Ŵcyl, is very important
for this observer to function properly. To adjust
the cylinder ow for soot deposits in the intake
ports an adaptation may be used (Kolmanovsky
et al., 2000b; Kolmanovsky and Siverguina, 2001).

We form the goal function as

Q =
1

2
1(p� pd)

2 +
1

2
2(Ŵegr �Wegr;d)

2;

where 1 and 2 are weighting factors. The time
rate of change of Q along the trajectories of (5),
(14), (16) satis�es

_Q= 1(p� pd)(cm(Wth +Wegr �Wcyl))

+ 2(Ŵegr �Wegr;d) � � � cm � (Wegr � Ŵegr):

(17)

If Wth, Wegr are treated as control inputs, then
Wegr;d+Wth;d =Wcyl;d,Wcyl = k0+k1p,Wcyl;d =
k0 + k1pd, imply that

_Qju=ud =�1cmk1(p� pd)
2

� 2�cm(Ŵegr �Wegr;d)
2;

(18)

i.e., the achievability condition holds with � = 0.
The SG controller that prescribes Wth, Wegr can
be de�ned with

@ _Q

@Wth

= 1(p� pd) � cm;

@ _Q

@Wegr

= cm1(p� pd) + 2(Ŵegr �Wegr;d)�cm:

The Wth, Wegr are, however, not the control in-
puts, but uth, uegr are. To derive the control laws
for uth and uegr and to analyze the stability, the
nominal models for fth, fegr are assumed. The in-
tegral and proportional feedback can subsequently
be relied upon to compensate for the uncertain-
ties. The SG controller that prescribes uth, uegr
can be de�ned with



@ _Q

@uth
= 1(p� pd) � cm � fth(p); (19)

@ _Q

@uegr
= cm1(p� pd)fegr(p; Te)

+ 2(Ŵegr �Wegr;d)�cmfegr(p; Te):

(20)

Thus the feedback is formed from the errors
in the intake manifold pressure and estimated
EGR ow, scaled by nonlinear gains that depend
on fth(p); fegr(p; Te). This gain scaling may be
bene�cial in that it reduces the feedback gains
for higher p, in the region where the actuator
authority of throttle and EGR valve are close to
vanishing. This may help to mitigate the e�ects
of frequent actuator saturation and reduce the
control activity.

Using (1),(2), (3), (4) and

fth(pd)uth;d + fegr(pd; Te;d)uegr;d = k0 + k1pd;

it follows that if uth = uth;d, uegr = uegr;d then

_Qju=ud = 1cm(p� pd)

�
uth;d(fth(p)� fth(pd))

+ uegr;d(fegr(p; Te)� fegr(pd; Te;d))

� k1(p� pd)

�
+B; (21)

where

B = 2�cm(Ŵegr �Wegr;d)�
�(fegr(p; Te)uegr;d � Ŵegr)

= 2�cm(Ŵegr �Wegr;d)uegr;d�
�(fegr(p; Te)� fegr(pd; Te;d))

�2�cm(Ŵegr �Wegr;d)
2;

(22)

and Te;d is the exhaust temperature corresponding
in steady-state to pd. By bounding the cross-
coupling term in the expression for B we obtain
that, for any c > 0,

B � �2�cm(1� 1

2c
)(Ŵegr �Wegr;d)

2

+
c2�cm

2
u2egr;d(fegr(p; Te)� fegr(pd; Te;d))

2:

The objective is now to determine under what
conditions the achievability condition (12) holds.
First, by considering the expression for fth in (2)
it follows that

(p� pd)(fth(p)� fth(pd)) � 0:

To further analyze the expression for _Q and stabil-
ity of the closed loop system the dynamic behavior
of the exhaust temperature need be known. This
behavior is determined not only by charge control,
but also by fueling and spark timing control, i.e.,
it is outside of the scope of the charge control.

If fueling and spark strategy are prescribed, then
Te becomes a function of the pressure p. Taking
the engine cycle delay into account, Te is actually
a function of the delayed value of the pressure,
i.e., Te = Te(p(t � �)), where � is the engine
cycle delay. Note that the exact dependence is
determined by a choice of spark timing and fu-
eling control strategy. For example, fueling being
adjusted to maintain a constant air-to-fuel ratio
and fueling being adjusted to maintain a constant
torque would result in di�erent dependencies of
Te on p(t��).

Consider �rst the situation when the delay �
is negligible, which is the case at higher engine
speeds. From the expressions (21) and (22) for
_Qju=ud and B it is clear that to ensure the
achievability condition in the form (12) the term
fegr(p; Te)�fegr(pd; Te;d) has to be bounded by a
term dependent on the magnitude of the pressure
error jp � pdj. Suppose a �egr > 0 can be found
such that

jfegr(p; Te(p))� fegr(pd; Te(pd))j � kegr jp� pdj;
and

fth(p) > 0;

for all p in a neighborhood of pd. This inequality
basically constrains the function fegr(p; Te(p)) to
be Lipshitz continuous in a neighborhood of pd; it
does hold for typical Te and pd < minfpa; peg. In
this case, it is straightforward to con�rm that the
achievability condition in the form (12) holds lo-
cally with � = diag(�1; 0) where �1 is suÆciently
large. Since � > �, it follows that a suÆciently
strong proportional feedback on the throttle to
compensate for the intake manifold pressure er-
rors can assure the closed loop stability. This con-
dition is only suÆcient and can be relaxed if more
information about the function Te is available.
The situation when the delay � is non-negligible
is more complex. Speci�cally, the inequalities of
the form

jfegr(p(t); Te(p(t��))) � fegr(pd; Te(pd)))j �
kegr jp(t)� pdj+ kT jp(t��)� pdj;

fth(p) > 0;

are assumed to hold locally, in a neighborhood
of pd, with kegr > 0; kT > 0. The achievability
condition in the form (12) does not directly apply
if a non-zero delay is present and one needs to
use the theory of Lyapunov-Krasovskii functionals
(Kolmanovskii and Nosov, 1986) to analyze the
stability. The approach is to modify (11) as

V = Q+
1

2
(�+w)T��1(�+w)+3

0Z
��

(p(t+�)�pd)2d�

where 3 > 0 is to be selected. Considering _V for
the same SG controller de�ned by (9),(10),(19),
(20) with Te = Te(p(t��)) we end up with



_V = _Qju=ud � LgQ�(LgQ)
T

+3(p(t)� pd)
2 � 3(p(t��)� pd)

2;

where _Qju=ud is given by (21),(22) with Te =
Te(p(t��)). The integral term in the new expres-
sion for V provides two terms in the expression
for _V : �3(p(t � �) � pd)

2 and +3(p(t) � pd)
2.

By properly selecting 3, �3(p(t � �) � pd)
2

can dominate those terms in the expression for
_V that are bounded from below by some multiple
of �(p(t��)� pd)

2; The latter term, +3(p(t)�
pd)

2, contributes to increasing _V but it can be
counteracted by �LgQ�(LgQ)

T, with a proper
selection of � > 0. Speci�cally, an expression of
the form _V � �� �Q can be shown to hold locally
if � > diag(�1; 0), where �1 is suÆciently large.
Thus p(t)! pd, Ŵegr(t)!Wegr;d provided a suf-
�ciently strong proportional feedback is utilized to
respond to intake manifold pressure errors. This
is the same conclusion as in the delay free case.

4. EXPERIMENTAL EVALUATION

Experiments have been conducted on a gasoline
direct injection engine to evaluate the SG con-
troller responses. The intake manifold pressure
signal was low-pass �ltered to get rid of periodic
oscillations at the engine �ring frequency. The
commanded actuator positions for the electronic
throttle and EGR valve were backtracked from the
commanded by the controller e�ective ow areas
of throttle and EGR valve. Dither and overdrive
were applied on top of the base actuator position
commands to deal with actuator imperfections.
The dynamic observer for the EGR ow was tuned
to provide a transient response qualitatively sim-
ilar to that of an ori�ce ow model while at the
same time correcting the estimate for the uncer-
tainties in that model. Typical closed loop system
responses are shown in Figures 2-3. They con�rm
that the closed-loop system is well-behaved.
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